42 resultados para Ferro-nickel melting slags
Resumo:
The structures of intermediates formed in propylene polymerisation using neutral salicyladiminato palladium(II) and nickel(II) complexes as catalysts have been investigated using density functional theory. Calculations show that all low energy intermediates contain agostic interactions either between the metal and a hydrogen from the added propylene forming four- or five-membered chelate rings, or, when a phenyl ring is present, between the metal and an aromatic C-C bond. The agostic interactions with the metal are concomitant with changes in ligand dimensions and electronic properties. In particular when a metal to hydrogen bond is formed, there is a lengthening of the C-H bond. Significant differences are found for the agostic interactions with palladium and nickel in that for Pd there is a clear preference for specific intermediates but for Ni there are several different structures with similar energies which are likely to lead to a greater variety of products on further polymerisation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A nickel catalyst was modeled with ligand L-2, [ NH = CH-CH = CH-O](-), which should have potential use as a syndiotactic polyolefin catalyst, and the reaction mechanism was studied by theoretical calculations using the density functional method at the B3LYP/ LANL2MB level. The mechanism involves the formation of the intermediate [(NiLMe)-Me-2](+), in which the metal occuples a T-shaped geometry. - This intermediate has two possible structures with the methyl group trans either to the oxygen or to the nitrogen atom of L-2. The results show that both structures can lead to the desired product via similar reaction paths, A and B. Thus, the polymerization could be considered as taking place either with the alkyl group occupying the position trans to the Ni-O or trans to the Ni-N bond in the catalyst. The polymerization process thus favors the catalysis of syndiotactic polyolefins. The syndiotactic synthesis effects could also be enhanced by variations in the ligand substituents. From energy considerations, we can conclude that it is more favorable for the methyl group to occupy the trans-O position to form a complex than to occupy the trans-N position. From bond length considerations, it is also more favoured for ethene to occupy the trans-O position than to occupy the trans-N position.
Resumo:
Propylene polymerization using salicyladiminato metal catalalysts has been studied using density functional theory at the B3LYP/LANL2DZ level. In particular, the effects on the reaction mechanisms of changing the metal from Pd(II) to Ni(II) have been investigated. While the reaction mechanisms involving the salicyladiminato Ni(II) catalyst have been found to be similar to those established previously for the salicyladiminato Pd(II) catalyst, the nickel catalyst was found to differentiate the trans-O intermediate from the trans-.N intermediate with an energy difference of 46.63 U mol(-1) significantly more than the palladium catalyst for which the energy difference was calculated as 35.82 kJ mol(-1). The energy difference between the trans-O configuration and the trans-N configuration is decreased significantly when combining a molecule of propylene with the catalyst. For the Ni catalyst, the trans-O isomer is more stable than the trans-N isomer to a greater extent than for Pd, so that the insertion of propylene from 20 is relatively less favoured for Ni than for Pd. It is predicted that the mechanism of isomerization from 20 to 2N through a rotational transition state TS2O2N is more appropriate for the Ni catalyst system. The palladium system shows a larger preference for pi-coordination than its nickel counterpart, although the latter possesses a lower reaction barrier. It was found that the occupation of the trans-O position in the asymmetric salicyladiminato catalyst is also more favored by the alkene as it is by the alkyl so that insertion of the alkene may always start from a particular configuration so that specific products are obtained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel trinuclear nickel(II) complex, [Ni-3(L)(2)(H2O)(2)](ClO4)(2), where L is a bridging unsymmetrical tetradentate ligand, involving o-phenylenediamine, diacetyl monoxime and acetylacetone (H2L = 4-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-phenylimino]-pentan-2- one oxime) has been synthesized and characterized structurally. In the complex, an octahedral Ni( II) centre is held in the middle by two square planar units with the aid of oxime and ketonic bridges. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
Two types of poly(epsilon-caprolactone (CLo)-co-poly(epsilon-caprolactam (CLa)) copolymers were prepared by catalyzed hydrolytic ring-opening polymerization. Both cyclic comonomers were added simultaneously in the reaction medium for the First type or materials where copolymers have a random distribution of counits, as evidenced by H-1 and C-13 NMR. For the second type of copolymers, the cyclic comonomers were added sequentially, yielding diblock poly(ester-amides). The materials were characterized by differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS), and transmission and scanning electron microscopies (TEM and SEM). Their biodegradation in compost was also studied. All copolymers were found to be miscible by the absence of structure in the melt. TEM revealed that all samples exhibited a crystalline lamellar morphology. DSC and WAXS showed that in a wide composition range (CLo contents from 6 to 55%) only the CLa units were capable of crystallization in the random copolymers. The block copolymer samples only experience a small reduction of crystallization and melting temperature with composition, and this was attributed to a dilution effect caused by the miscible noncrystalline CLo units. The comparison between block and random copolymers provided a unique opportunity to distinguish the dilution effect of the CLo units on the crystallization and melting of the polyamide phase from the chemical composition effect in the random copolymers case, where the CLa sequences are interrupted statistically by the CLo units, making the crystallization of the polyamide strongly composition dependent. Finally, the enzymatic degradation of the copolymers in composted soil indicate a synergistic behavior where much faster degradation was obtained for random copolymers witha CLo content larger than 30% than for neat PCL.
Resumo:
Formation of a quasi-symmetrical mu(3)-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu(3)-CO3){Ni-2(salmeNH)(2)(NCS)(2)}[Ni(salmeNH(2))(2)]center dot Et2O center dot H2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH)(2)]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, (Ni(salmeNH)(2)], and one of the possible intermediate species, [Ni(salmeNH(2))(2)(NCS)(2)], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10(-4).
Resumo:
A series of five Ni(II)-complexes containing the same tridentate Schiff base but different monoanionic ligands (N-3(-), NO3-, PhCOO- and NO2-)reveals that the competitive as well as the cooperative role of the monoanions and phenoxo group in bridging the metal ions play the key role in the variation of molecular architecture.
Resumo:
Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Three new mononuclear complexes of nitrogen-sulfur donor sets, formulated as (Fe-II(L)Cl-2] (1), [Co-II(L)Cl-2] (2) and [Ni-II(L)Cl-2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes I and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit Fe-II/Fe-III, co(II)/co(III) and Ni-II/Ni-III quasi-reversible redox couples in cyclic voltammograms with E-1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
[Cu4L2(bpy)(4)(H2O)(3)](ClO4)(4).2.5H(2)O, 1, a new tetranuclear Cu-II cluster showing square planar geometry, formed with aspartate bridging ligand (L) has been synthesized. The global magnetic coupling is ferromagnetic but theoretical DFT/B3LYP calculations are necessary to assign which Cu-L-Cu side is ferro or antiferromagnetically coupled.
Resumo:
The new square-planar Ni-II-N2O2 complex [Ni(L-Me)] (1(Me)), where L-Me, stands for the dianionic phenolato form of N,N'bis(3,5-di-tert-butyl-salicylidene)-4,5-dimethyl-1,2-phenyl- enediamine ((LH2)-L-Me), has been synthesised and fully characterised. X-ray crystallography was also used for the characterisation. The electrochemical one-electron oxidation of 1(Me) produces the thermally stable (within the temperature range 10-295 K) cationic species (1(Me))(+). The UV/Vis and X-band EPR experimental data, supported by DFT calculations, indicate that (1(Me))(+), is best described as a Ni-II monoradical complex and, thus, does NOT exist in a Ni-III ground state, in contrast to its demethylated counterpart [Ni(L-H)](+) (1(H))(+) below 170 K.
Resumo:
The advantages of bimetallic nanoparticles as C - C coupling catalysts are discussed, and a simple, bottom- up synthesis method of core - shell Ni - Pd clusters is presented. This method combines electrochemical and 'wet chemical' techniques, and enables the preparation of highly monodispersed structured bimetallic nanoclusters. The double- anode electrochemical cell is described in detail. The core - shell Ni - Pd clusters were then applied as catalysts in the Hiyama cross- coupling reaction between phenyltrimethoxysilane and various haloaryls. Good product yields were obtained with a variety of iodo- and bromoaryls. We found that, for a fixed amount of Pd atoms, the core - shell clusters outperform both the monometallic Pd clusters and the alloy bimetallic Ni - Pd ones. THF is an excellent solvent for this process, with less than 2% homocoupling by-product. The roles of the stabiliser and the solvent are discussed.
Resumo:
The Schiff base ligand, HL (2-[1-(3-methylamino-propylimino)-ethyl]-phenol), the 1:1 condensation product of 2-hydroxy acetophenone and N-methyl-1,3-diaminopropane, has been synthesized and characterized by X-ray crystallography as the perchlorate salt [H2L]ClO4 (1). The structure consists of discrete [H2L](+) cations and perchlorate anions. Two dinuclear Ni-II complexes, [Ni2L2(NO2)(2)] (2), [Ni2L2(NO3)(2)] (3) have been synthesized using this ligand and characterized by single crystal X-ray analyses. Complexes 2 and 3 are centrosymmetric dimers in which the Ni-II ions are in distorted fac- and mer-octahedral environments, respectively, bridged by two mu(2)-phenolate ions of deprotonated ligand, L. The plane of the phenyl rings and the Ni2O2 basal plane are nearly coplanar in 2 but almost perpendicular in 3. We have studied and explained this different behavior using high level DFT calculations (RI-BP86/def2-TZVP level of theory). The conformation observed in 3, which is energetically less favorable, is stabilized via intermolecular non-covalent interactions. Under the excitation of ultraviolet light, characteristic fluorescence of compound 1 was observed; by comparison fluorescence intensity decreases in case of compound 3 and completely quenched in compound 2.
Resumo:
The 1:1 condensation of N-methyl-1,3-diaminopropane and N,N-diethyl-1,2-diminoethane with 2-acetylpyridine, respectively at high dilution gives the tridentate mono-condensed Schiff bases N-methyl-N'-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L-1) and N,N-diethyl-N'-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L-2). The tridentate ligands were allowed to react with methanol solutions of nickel(II) thiocyanate to prepare the complexes [Ni(L-1)(SCN)(2)(OH2) (1) and [{Ni(L-2)(SCN)}(2)] (2). Single crystal X-ray diffraction was used to confirm the structures of the complexes. The nickel(II) in complex 1 is bonded to three nitrogen donor atoms of the ligand L-1 in a mer orientation, together with two thiocyanates bonded through nitrogen and a water molecule, and it is the first Schiff base complex of nickel(II) containing both thiocyanate and coordinated water. The coordinated water initiates a hydrogen bonded 2D network. In complex 2, the nickel ion occupies a slightly distorted octahedral coordination sphere, being bonded to three nitrogen atoms from the ligand L-2, also in a mer orientation, and two thiocyanate anions through nitrogen. In contrast to 1, the sixth coordination site is occupied by a sulfur atom from a thiocyanate anion in an adjacent molecule, thus creating a centrosymmetric dimer. A variable temperature magnetic study of complex 2 indicates the simultaneous presence of zero-field splitting, weak intramolecular ferromagnetic coupling and intermolecular antiferromagnetic interactions between the nickel(II) centers.