26 resultados para Facial pain and temporomandibular joint disorder syndrome
Resumo:
Background and aims The Metabolic Syndrome (MetS) is associated with increased cardiovascular risk. Circulating microparticles (MP) are involved in the pathogenesis of atherothrombotic disorders and are raised in individual with CVD. We measured their level and cellular origin in subjects with MetS and analyzed their associations with 1/anthropometric and biological parameters of MetS, 2/inflammation and oxidative stress markers. Methods and results Eighty-eight subjects with the MetS according to the NCEP-ATPIII definition were enrolled in a bicentric study and compared to 27 healthy controls. AnnexinV-positive MP (TMP), MP derived from platelets (PMP), erythrocytes (ErMP), endothelial cells (EMP), leukocytes (LMP) and granulocytes (PNMP) were determined by flow cytometry. MetS subjects had significantly higher counts/μl of TMP (730.6 ± 49.7 vs 352.8 ± 35.6), PMP (416.0 ± 43.8 vs 250.5 ± 23.5), ErMP (243.8 ± 22.1 vs 73.6 ± 19.6) and EMP (7.8 ± 0.8 vs 4.0 ± 1.0) compared with controls. LMP and PNMP were not statistically different between groups. Multivariate analysis demonstrated that each criterion for the MetS influenced the number of TMP. Waist girth was a significant determinant of PMP and EMP level and blood pressure was correlated with EMP level. Glycemia positively correlated with PMP level whereas dyslipidemia influenced EMP and ErMP levels. Interestingly, the oxidative stress markers, plasma glutathione peroxydase and urinary 8-iso-prostaglandin F2 α, independently influenced TMP and PMP levels whereas inflammatory markers did not, irrespective of MP type. Conclusion Increased levels of TMP, PMP, ErMP and EMP are associated with individual metabolic abnormalities of MetS and oxidative stress. Whether MP assessment may represent a marker for risk stratification or a target for pharmacological intervention deserves further investigation.
Resumo:
It is now well established that the prevalence of mental health difficulties in individuals with autism spectrum disorders (ASD) is considerably higher than in the general population. With recent estimates of the prevalence of autism spectrum disorders being as high as one percent, increasing numbers of children and young people are presenting to local and specialist services with mental health problems in addition to a diagnosis of ASD. Many families report that the impact of the mental health problems can be as or more impairing than the autism spectrum difficulties themselves. Clinical services are frequently called upon to treat these difficulties; however, there is limited evidence for the effectiveness of treatments in this population. This paper reports a case series of children and adolescents with ASD and an anxiety disorder who were treated with a standard cognitive behaviour therapy (CBT) rationale adapted to take account of the neuropsychological features of ASD. Common features of the presentation of the disorders and also treatment processes are discussed.
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share behavioural-cognitive abnormalities in sustained attention. A key question is whether this shared cognitive phenotype is based on common or different underlying pathophysiologies. To elucidate this question, we compared 20 boys with ADHD to 20 age and IQ matched ASD and 20 healthy boys using functional magnetic resonance imaging (fMRI) during a parametrically modulated vigilance task with a progressively increasing load of sustained attention. ADHD and ASD boys had significantly reduced activation relative to controls in bilateral striato–thalamic regions, left dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex. Both groups also displayed significantly increased precuneus activation relative to controls. Precuneus was negatively correlated with the DLPFC activation, and progressively more deactivated with increasing attention load in controls, but not patients, suggesting problems with deactivation of a task-related default mode network in both disorders. However, left DLPFC underactivation was significantly more pronounced in ADHD relative to ASD boys, which furthermore was associated with sustained performance measures that were only impaired in ADHD patients. ASD boys, on the other hand, had disorder-specific enhanced cerebellar activation relative to both ADHD and control boys, presumably reflecting compensation. The findings show that ADHD and ASD boys have both shared and disorder-specific abnormalities in brain function during sustained attention. Shared deficits were in fronto–striato–parietal activation and default mode suppression. Differences were a more severe DLPFC dysfunction in ADHD and a disorder-specific fronto–striato–cerebellar dysregulation in ASD.
Resumo:
Objective Behavioural inhibition (BI) in early childhood is associated with increased risk for anxiety. The present research examines BI alongside family environment factors, specifically maternal negativity and overinvolvement, maternal anxiety and mother-child attachment, with a view to providing a broader understanding of the development of child anxiety. Method Participants were 202 children classified at age 4 as either behaviourally inhibited (N=102) or uninhibited (N=100). Family environment, BI and child anxiety were assessed at baseline and child anxiety and BI were assessed again two-years later when participants were aged 6 years. Results After controlling for baseline anxiety, inhibited participants were significantly more likely to meet criteria for a diagnosis of social phobia and generalized anxiety disorder at follow-up. Path analysis suggested that maternal anxiety significantly affected child anxiety over time, even after controlling for the effects of BI and baseline anxiety. No significant paths from parenting or attachment to child anxiety were found. Maternal overinvolvement was significantly associated with BI at follow-up. Conclusions At age 4, BI, maternal anxiety and child anxiety represent risk factors for anxiety at age 6. Furthermore, overinvolved parenting increases risk for BI at age 6, which may then lead to the development of anxiety in later childhood.
Resumo:
Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual’s tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain–cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual’s tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG–DMN structural connectivity and more dynamic resting state PAG–DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.
Resumo:
The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.
Resumo:
Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share cognitive abnormalities in temporal foresight. A key question is whether shared cognitive phenotypes are based on common or different underlying pathophysiologies and whether comorbid patients have additive neurofunctional deficits, resemble one of the disorders or have a different pathophysiology. We compared age- and IQ-matched boys with non-comorbid ADHD (18), non-comorbid ASD (15), comorbid ADHD and ASD (13) and healthy controls (18) using functional magnetic resonance imaging (fMRI) during a temporal discounting task. Only the ASD and the comorbid groups discounted delayed rewards more steeply. The fMRI data showed both shared and disorder-specific abnormalities in the three groups relative to controls in their brain-behaviour associations. The comorbid group showed both unique and more severe brain-discounting associations than controls and the non-comorbid patient groups in temporal discounting areas of ventromedial and lateral prefrontal cortex, ventral striatum and anterior cingulate, suggesting that comorbidity is neither an endophenocopy of the two pure disorders nor an additive pathology.
Resumo:
The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.
Resumo:
Cognitive models of obsessive compulsive disorder (OCD) have been influential in understanding and treating the disorder in adults. Cognitive models may also be applicable to children and adolescents and would have important implications for treatment. The aim of this systematic review was to evaluate research that examined the applicability of the cognitive model of OCD to children and adolescents. Inclusion criteria were set broadly but most studies identified included data regarding responsibility appraisals, thought-action fusion or meta-cognitive models of OCD in children or adolescents. Eleven studies were identified in a systematic literature search. Seven studies were with non clinical samples, and 10 studies were cross-sectional. Only one study did not support cognitive models of OCD in children and adolescents and this was with a clinical sample and was the only experimental study. Overall, the results strongly supported the applicability of cognitive models of OCD to children and young people. There were, however, clear gaps in the literature. Future research should include experimental studies, clinical groups, and should test which of the different models provide more explanatory power.
Resumo:
Background: Some studies have proven that a conventional visual brain computer interface (BCI) based on overt attention cannot be used effectively when eye movement control is not possible. To solve this problem, a novel visual-based BCI system based on covert attention and feature attention has been proposed and was called the gaze-independent BCI. Color and shape difference between stimuli and backgrounds have generally been used in examples of gaze-independent BCIs. Recently, a new paradigm based on facial expression changes has been presented, and obtained high performance. However, some facial expressions were so similar that users couldn't tell them apart, especially when they were presented at the same position in a rapid serial visual presentation (RSVP) paradigm. Consequently, the performance of the BCI is reduced. New Method: In this paper, we combined facial expressions and colors to optimize the stimuli presentation in the gaze-independent BCI. This optimized paradigm was called the colored dummy face pattern. It is suggested that different colors and facial expressions could help users to locate the target and evoke larger event-related potentials (ERPs). In order to evaluate the performance of this new paradigm, two other paradigms were presented, called the gray dummy face pattern and the colored ball pattern. Comparison with Existing Method(s): The key point that determined the value of the colored dummy faces stimuli in BCI systems was whether the dummy face stimuli could obtain higher performance than gray faces or colored balls stimuli. Ten healthy participants (seven male, aged 21–26 years, mean 24.5 ± 1.25) participated in our experiment. Online and offline results of four different paradigms were obtained and comparatively analyzed. Results: The results showed that the colored dummy face pattern could evoke higher P300 and N400 ERP amplitudes, compared with the gray dummy face pattern and the colored ball pattern. Online results showed that the colored dummy face pattern had a significant advantage in terms of classification accuracy (p < 0.05) and information transfer rate (p < 0.05) compared to the other two patterns. Conclusions: The stimuli used in the colored dummy face paradigm combined color and facial expressions. This had a significant advantage in terms of the evoked P300 and N400 amplitudes and resulted in high classification accuracies and information transfer rates. It was compared with colored ball and gray dummy face stimuli.