38 resultados para FULL HYDRATION
Resumo:
From birth onwards, the gastrointestinal (GI) tract of infants progressively acquires a complex range of micro-organisms. It is thought that by 2 years of age the GI microbial population has stabilized. Within the developmental period of the infant GI microbiota, weaning is considered to be most critical, as the infant switches from a milk-based diet (breast and/or formula) to a variety of food components. Longitudinal analysis of the biological succession of the infant GI/faecal microbiota is lacking. In this study, faecal samples were obtained regularly from 14 infants from 1 month to 18 months of age. Seven of the infants (including a set of twins) were exclusively breast-fed and seven were exclusively formula-fed prior to weaning, with 175 and 154 faecal samples, respectively, obtained from each group. Diversity and dynamics of the infant faecal microbiota were analysed by using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Overall, the data demonstrated large inter- and intra-individual differences in the faecal microbiological profiles during the study period. However, the infant faecal microbiota merged with time towards a climax community within and between feeding groups. Data from the twins showed the highest degree of similarity both quantitatively and qualitatively. Inter-individual variation was evident within the infant faecal microbiota and its development, even within exclusively formula-fed infants receiving the same diet. These data can be of help to future clinical trials (e.g. targeted weaning products) to organize protocols and obtain a more accurate outline of the changes and dynamics of the infant GI microbiota.
Resumo:
Background: Reviews and practice guidelines for paediatric obsessive-compulsive disorder (OCD) recommend cognitive-behaviour therapy (CBT) as the psychological treatment of choice, but note that it has not been sufficiently evaluated for children and adolescents and that more randomized controlled trials are needed. The aim of this trial was to evaluate effectiveness and optimal delivery of CBT, emphasizing cognitive interventions. Methods: A total of 96 children and adolescents with OCD were randomly allocated to the three conditions each of approximately 12 weeks duration: full CBT (average therapist contact: 12 sessions) and brief CBT (average contact: 5 sessions, with use of therapist-guided workbooks), and wait-list/delayed treatment. The primary outcome measure was the child version of the semi-structured interviewer-based Yale-Brown Obsessive Compulsive Scale. Clinical Trial registration: http://www.controlled-trials.com/ISRCTN/; unique identifier: ISRCTN29092580. Results: There was statistically significant symptomatic improvement in both treatment groups compared with the wait-list group, with no significant differences in outcomes between the two treatment groups. Controlled treatment effect sizes in intention-to-treat analyses were 2.2 for full CBT and 1.6 for brief CBT. Improvements were maintained at follow-up an average of 14 weeks later. Conclusions: The findings demonstrate the benefits of CBT emphasizing cognitive interventions for children and adolescents with OCD and suggest that relatively lower therapist intensity delivery with use of therapist-guided workbooks is an efficient mode of delivery.
Resumo:
The phase shift full bridge (PSFB) converter allows high efficiency power conversion at high frequencies through zero voltage switching (ZVS); the parasitic drain-to-source capacitance of the MOSFET is discharged by a resonant inductance before the switch is gated resulting in near zero turn-on switching losses. Typically, an extra inductance is added to the leakage inductance of a transformer to form the resonant inductance necessary to charge and discharge the parasitic capacitances of the PSFB converter. However, many PSFB models do not consider the effects of the magnetizing inductance or dead-time in selecting the resonant inductance required to achieve ZVS. The choice of resonant inductance is crucial to the ZVS operation of the PSFB converter. Incorrectly sized resonant inductance will not achieve ZVS or will limit the load regulation ability of the converter. This paper presents a unique and accurate equation for calculating the resonant inductance required to achieve ZVS over a wide load range incorporating the effects of the magnetizing inductance and dead-time. The derived equations are validated against PSPICE simulations of a PSFB converter and extensive hardware experimentations.
Resumo:
Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.
Resumo:
This paper investigates the acquisition of syntax in L2 grammars. We tested adult L2 speakers of Spanish (English L1) on the feature specification of T(ense), which is different in English and Spanish in so-called subject-to-subject raising structures. We present experimental results with the verb parecer “to seem/to appear” in different tenses, with and without experiencers, and with Tense Phrase (TP), verb phrase (vP) and Adjectival Phrase (AP) complements. The results show that advanced L2 learners can perform just like native Spanish speakers regarding grammatical knowledge in this domain, although the subtle differences between both languages are not explicitly taught. We argue that these results support Full Access approaches to Universal Grammar (UG) in L2 acquisition, by providing evidence that uninterpretable syntactic features can be learned in adult L2, even when such features are not directly instantiated in the same grammatical domain in the L1 grammar.
Resumo:
This letter has tested the canopy height profile (CHP) methodology as a way of effective leaf area index (LAIe) and vertical vegetation profile retrieval at a single-tree level. Waveform and discrete airborne LiDAR data from six swaths, as well as from the combined data of six swaths, were used to extract the LAIe of a single live Callitris glaucophylla tree. LAIe was extracted from raw waveform as an intermediate step in the CHP methodology, with two different vegetation-ground reflectance ratios. Discrete point LAIe estimates were derived from the gap probability using the following: 1) single ground returns and 2) all ground returns. LiDAR LAIe retrievals were subsequently compared to hemispherical photography estimates, yielding mean values within ±7% of the latter, depending on the method used. The CHP of a single dead Callitris glaucophylla tree, representing the distribution of vegetation material, was verified with a field profile manually reconstructed from convergent photographs taken with a fixed-focal-length camera. A binwise comparison of the two profiles showed very high correlation between the data reaching R2 of 0.86 for the CHP from combined swaths. Using a study-area-adjusted reflectance ratio improved the correlation between the profiles, but only marginally in comparison to using an arbitrary ratio of 0.5 for the laser wavelength of 1550 nm.
Resumo:
Although it is well known that water is essential for human homeostasis and survival, only recently have we begun to understand its role in the maintenance of brain function. Herein, we integrate emerging evidence regarding the effects of both dehydration and additional acute water consumption on cognition and mood. Current findings in the field suggest that particular cognitive abilities and mood states are positively influenced by water consumption. The impact of dehydration on cognition and mood is particularly relevant for those with poor fluid regulation, such as the elderly and children. We critically review the most recent advances in both behavioural and neuroimaging studies of dehydration and link the findings to the known effects of water on hormonal, neurochemical and vascular functions in an attempt to suggest plausible mechanisms of action. We identify some methodological weaknesses, including inconsistent measurements in cognitive assessment and the lack of objective hydration state measurements as well as gaps in knowledge concerning mediating factors that may influence water intervention effects. Finally, we discuss how future research can best elucidate the role of water in the optimal maintenance of brain health and function.
Resumo:
This paper presents an in-depth critical discussion and derivation of a detailed small-signal analysis of the Phase-Shifted Full-Bridge (PSFB) converter. Circuit parasitics, resonant inductance and transformer turns ratio have all been taken into account in the evaluation of this topology’s open-loop control-to-output, line-to-output and load-to-output transfer functions. Accordingly, the significant impact of losses and resonant inductance on the converter’s transfer functions is highlighted. The enhanced dynamic model proposed in this paper enables the correct design of the converter compensator, including the effect of parasitics on the dynamic behavior of the PSFB converter. Detailed experimental results for a real-life 36V-to-14V/10A PSFB industrial application show excellent agreement with the predictions from the model proposed herein.1
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.
Resumo:
In this paper the origin and evolution of the Sun’s open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun’s open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested.