49 resultados para FILTER
Resumo:
The introduction of non-toxic fluride compounds as direct replacements for Thorium Fluoride (ThF4) has renewed interest in the use of low index fluoride compounds in high performance infrared filters. This paper reports the results of an investigation into the effects of combining these low index materials, particularly Barium Fluoride (BaF2), with the high index material Lead Telluride (PbTe) in bandpass and edge filters. Infrared filter designs using conventional and the new material ombination are compared, and infrared filters using these material combinations have been manufactured and have been shown to suffer problems with residual stress. A possible solution to this problem utilising Zinc Sulphide (ZnS) layers with compensating compressive stress is discussed.
Resumo:
In a recent paper, Vathsal suggested that a new configuration had been obtained for linear filtering problems, which was distinctly different from the Kalman-Bucy filter. It is shown that this in fact is merely a special case of the filter with a specified input.
Resumo:
A method of designing multi-cavity infrared narrowband filters for bandwidth between 10% and 20% is presended: The method is based on a Tschebyshev prototype. The theoretical indices from these are simulated by Herpin equivalent layers, the outer layers may be also simulated by Herrmann's asymetrical tri-layer. The new algorithm of filter design can easily be implemented in any microcomputer.
Resumo:
Nonpolarizing edge filters have recently becmoe important to separate those IR gas bands used in atmospheric sensing into their P and R branches, namely, the v2 of C02 at a 15µm wavelength. Whereas Thelen has developed all necessary principles for the entire class of nonpolarizing filters it remains difficult to subsittute ither refractive indices (such as infrared) into a visible-region design or assess the effect on consequent performance.
Resumo:
A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.
Resumo:
The power of an adaptive equalizer is maximized when the structural parameters including the tap-length and decision delay can be optimally chosen. Although the method for adjusting either the tap-length or decision delay has been proposed, adjusting both simultaneously becomes much more involved as they interact with each other. In this paper, this problem is solved by putting a linear prewhitener before the equalizer, with which the equivalent channel becomes maximum-phase. This implies that the optimum decision delay can be simply ¯xed at the tap-length minus one, while the tap-length can then be chosen using a similar approach as that proposed in our previous work.
Resumo:
This paper describes a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation models using the extended Kalman filter. The method involves the use of a time-varying linearisation of a semi-explicit index one differential-algebraic equation. The estimation technique consists of a simplified extended Kalman filter that is integrated with the differential-algebraic equation model. The paper describes a simulation study using a model of a batch chemical reactor. It also reports a study based on experimental data obtained from a mixing process, where the model of the system is solved using the sequential modular method and the estimation involves a bank of extended Kalman filters.
Resumo:
In a recent study, Williams introduced a simple modification to the widely used Robert–Asselin (RA) filter for numerical integration. The main purpose of the Robert–Asselin–Williams (RAW) filter is to avoid the undesired numerical damping of the RA filter and to increase the accuracy. In the present paper, the effects of the modification are comprehensively evaluated in the Simplified Parameterizations, Primitive Equation Dynamics (SPEEDY) atmospheric general circulation model. First, the authors search for significant changes in the monthly climatology due to the introduction of the new filter. After testing both at the local level and at the field level, no significant changes are found, which is advantageous in the sense that the new scheme does not require a retuning of the parameterized model physics. Second, the authors examine whether the new filter improves the skill of short- and medium-term forecasts. January 1982 data from the NCEP–NCAR reanalysis are used to evaluate the forecast skill. Improvements are found in all the model variables (except the relative humidity, which is hardly changed). The improvements increase with lead time and are especially evident in medium-range forecasts (96–144 h). For example, in tropical surface pressure predictions, 5-day forecasts made using the RAW filter have approximately the same skill as 4-day forecasts made using the RA filter. The results of this work are encouraging for the implementation of the RAW filter in other models currently using the RA filter.
Resumo:
A particle filter is a data assimilation scheme that employs a fully nonlinear, non-Gaussian analysis step. Unfortunately as the size of the state grows the number of ensemble members required for the particle filter to converge to the true solution increases exponentially. To overcome this Vaswani [Vaswani N. 2008. IEEE Trans Signal Process 56:4583–97] proposed a new method known as mode tracking to improve the efficiency of the particle filter. When mode tracking, the state is split into two subspaces. One subspace is forecast using the particle filter, the other is treated so that its values are set equal to the mode of the marginal pdf. There are many ways to split the state. One hypothesis is that the best results should be obtained from the particle filter with mode tracking when we mode track the maximum number of unimodal dimensions. The aim of this paper is to test this hypothesis using the three dimensional stochastic Lorenz equations with direct observations. It is found that mode tracking the maximum number of unimodal dimensions does not always provide the best result. The best choice of states to mode track depends on the number of particles used and the accuracy and frequency of the observations.
Resumo:
Sirens’ used by police, fire and paramedic vehicles generate noise that propagates inside the vehicle cab that subsequently corrupts intelligibility of voice communications from the emergency vehicle to the control room. It is even common for the siren to be turned off to enable the control room to hear what is being said. Both fixed filter and adaptive filter systems have previously been developed to help cancel the transmission of the siren noise over the radio. Previous cancellation systems have only concentrated on the traditional 2-tone, wail and yelp sirens. This paper discusses an improvement to a previous adaptive filter system and presents the cancellation results to three new types of sirens; being chirp pulsar and localiser. A siren noise filter system has the capability to improve the response time for an emergency vehicle and thus help save lives. To date, this system has been tested using live recordings taken from a nonemergency situation with good results.