45 resultados para FCP and FCC mapping
Resumo:
We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120-400K. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54Å and 1.35Å respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.
Resumo:
Palaeoclimates across Europe for 6000 y BP were estimated from pollen data using the modern pollen analogue technique constrained with lake-level data. The constraint consists of restricting the set of modern pollen samples considered as analogues of the fossil samples to those locations where the implied change in annual precipitation minus evapotranspiration (P–E) is consistent with the regional change in moisture balance as indicated by lakes. An artificial neural network was used for the spatial interpolation of lake-level changes to the pollen sites, and for mapping palaeoclimate anomalies. The climate variables reconstructed were mean temperature of the coldest month (T c ), growing degree days above 5 °C (GDD), moisture availability expressed as the ratio of actual to equilibrium evapotranspiration (α), and P–E. The constraint improved the spatial coherency of the reconstructed palaeoclimate anomalies, especially for P–E. The reconstructions indicate clear spatial and seasonal patterns of Holocene climate change, which can provide a quantitative benchmark for the evaluation of palaeoclimate model simulations. Winter temperatures (T c ) were 1–3 K greater than present in the far N and NE of Europe, but 2–4 K less than present in the Mediterranean region. Summer warmth (GDD) was greater than present in NW Europe (by 400–800 K day at the highest elevations) and in the Alps, but >400 K day less than present at lower elevations in S Europe. P–E was 50–250 mm less than present in NW Europe and the Alps, but α was 10–15% greater than present in S Europe and P–E was 50–200 mm greater than present in S and E Europe.
Resumo:
The delineation of Geomorphic Process Units (GPUs) aims to quantify past, current and future geomorphological processes and the sediment flux associated with them. Five GPUs have been identified for the Okstindan area of northern Norway and these were derived from the combination of Landsat satellite imagery (TM and ETM+) with stereo aerial photographs (used to construct a Digital Elevation Model) and ground survey. The Okstindan study area is sub-arctic and mountainous and is dominated by glacial and periglacial processes. The GPUs exclude the glacial system (some 37% of the study area) and hence they are focussed upon periglacial and colluvial processes. The identified GPUs are: 1. solifluction and rill erosion; 2. talus creep, slope wash and rill erosion; 3. accumulation of debris by rock and boulder fall; 4. rockwalls; and 5. stable ground with dissolved transport. The GPUs have been applied to a ‘test site’ within the study area in order to illustrate their potential for mapping the spatial distribution of geomorphological processes. The test site within the study area is a catchment which is representative of the range of geomorphological processes identified.
Predictive vegetation mapping in the Mediterranean context: Considerations and methodological issues
Resumo:
The need to map vegetation communities over large areas for nature conservation and to predict the impact of environmental change on vegetation distributions, has stimulated the development of techniques for predictive vegetation mapping. Predictive vegetation studies start with the development of a model relating vegetation units and mapped physical data, followed by the application of that model to a geographic database and over a wide range of spatial scales. This field is particularly important for identifying sites for rare and endangered species and locations of high biodiversity such as many areas of the Mediterranean Basin. The potential of the approach is illustrated with a mapping exercise in the alti-meditterranean zone of Lefka Ori in Crete. The study established the nature of the relationship between vegetation communities and physical data including altitude, slope and geomorphology. In this way the knowledge of community distribution was improved enabling a GIS-based model capable of predicting community distribution to be constructed. The paper describes the development of the spatial model and the methodological problems of predictive mapping for monitoring Mediterranean ecosystems. The paper concludes with a discussion of the role of predictive vegetation mapping and other spatial techniques, such as fuzzy mapping and geostatistics, for improving our understanding of the dynamics of Mediterranean ecosystems and for practical management in a region that is under increasing pressure from human impact.
Resumo:
Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.
Resumo:
The timing of flag leaf senescence (FLS) is an important determinant of yield under stress and optimal environments. A doubled haploid population derived from crossing the photo period-sensitive variety Beaver,with the photo period-insensitive variety Soissons, varied significantly for this trait, measured as the percent green flag leaf area remaining at 14 days and 35 days after anthesis. This trait also showed a significantly positive correlation with yield under variable environmental regimes. QTL analysis based on a genetic map derived from 48 doubled haploid lines using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers, revealed the genetic control of this trait. The coincidence of QTL for senescence on chromosomes 2B and 2D under drought-stressed and optimal environments, respectively, indicate a complex genetic mechanism of this trait involving the re-mobilisation of resources from the source to the sink during senescence.
Resumo:
Resistant strains of Plasmodium falciparum and the unavailability of useful antimalarial vaccines reinforce the need to develop new efficacious antimalarials. This study details a pharmacophore model that has been used to identify a potent, soluble, orally bioavailable antimalarial bisquinoline, metaquine (N,N'-bis(7-chloroquinolin-4-yl)benzene-1,3-diamine) (dihydrochloride), which is active against Plasmodium berghei in vivo (oral ID50 of 25 mu mol/kg) and multidrug-resistant Plasmodium falciparum K1 in vitro (0.17 mu M). Metaquine shows strong affinity for the putative antimalarial receptor, heme at pH 7.4 in aqueous DMSO. Both crystallographic analyses and quantum mechanical calculations (HF/6-31+G*) reveal important regions of protonation and bonding thought to persist at parasitic vacuolar pH concordant with our receptor model. Formation of drug-heme adduct in solution was confirmed using high-resolution positive ion electrospray mass spectrometry. Metaquine showed strong binding with the receptor in a 1: 1 ratio (log K = 5.7 +/- 0.1) that was predicted by molecular mechanics calculations. This study illustrates a rational multidisciplinary approach for the development of new 4-aminoquinoline antimalarials, with efficacy superior to chloroquine, based on the use of a pharmacophore model.
Resumo:
The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Many evolutionary algorithm applications involve either fitness functions with high time complexity or large dimensionality (hence very many fitness evaluations will typically be needed) or both. In such circumstances, there is a dire need to tune various features of the algorithm well so that performance and time savings are optimized. However, these are precisely the circumstances in which prior tuning is very costly in time and resources. There is hence a need for methods which enable fast prior tuning in such cases. We describe a candidate technique for this purpose, in which we model a landscape as a finite state machine, inferred from preliminary sampling runs. In prior algorithm-tuning trials, we can replace the 'real' landscape with the model, enabling extremely fast tuning, saving far more time than was required to infer the model. Preliminary results indicate much promise, though much work needs to be done to establish various aspects of the conditions under which it can be most beneficially used. A main limitation of the method as described here is a restriction to mutation-only algorithms, but there are various ways to address this and other limitations.
Resumo:
Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.
Resumo:
In this working paper we discuss current attempts to engage communities in planning policy formulation in the UK. In particular we focus on the preparation of Community Strategies (CS) in England to inform local public policy and the wider proposals recently published by the UK government to move towards enhanced community engagement in planning (DTLR, 2001). We discuss how such strategies could be operationalised with a conceptual framework developed following ideas derived from ANT (cf. Murdoch, 1997, 1998; Selman, 2000; Parker & Wragg, 1999; Callon, 1986, 1998) and the ‘capitals’ literature (Lin, 2002; Fine, 2001; Selman, 2000; Putnam, 1993). We see this as an expression of neo-pragmatic planning theory, (Hoch, 1996; Stein & Harper, 2000) to develop a form of ‘pre-plan mapping’.