50 resultados para Extended lifecycle
Resumo:
A generic model of Exergy Assessment is proposed for the Environmental Impact of the Building Lifecycle, with a special focus on the natural environment. Three environmental impacts: energy consumption, resource consumption and pollutant discharge have been analyzed with reference to energy-embodied exergy, resource chemical exergy and abatement exergy, respectively. The generic model of Exergy Assessment of the Environmental Impact of the Building Lifecycle thus formulated contains two sub-models, one from the aspect of building energy utilization and the other from building materials use. Combined with theories by ecologists such as Odum, the paper evaluates a building's environmental sustainability through its exergy footprint and environmental impacts. A case study from Chongqing, China illustrates the application of this method. From the case study, it was found that energy consumption constitutes 70–80% of the total environmental impact during a 50-year building lifecycle, in which the operation phase accounts for 80% of the total environmental impact, the building material production phase 15% and 5% for the other phases.
Resumo:
The climatology of a stratosphere-resolving version of the Met Office’s climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations—the tropical “tape recorder”—is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasi-biennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
As the building industry proceeds in the direction of low impact buildings, research attention is being drawn towards the reduction of carbon dioxide emission and waste. Starting from design and construction to operation and demolition, various building materials are used throughout the whole building lifecycle involving significant energy consumption and waste generation. Building Information Modelling (BIM) is emerging as a tool that can support holistic design-decision making for reducing embodied carbon and waste production in the building lifecycle. This study aims to establish a framework for assessing embodied carbon and waste underpinned by BIM technology. On the basis of current research review, the framework is considered to include functional modules for embodied carbon computation. There are a module for waste estimation, a knowledge-base of construction and demolition methods, a repository of building components information, and an inventory of construction materials’ energy and carbon. Through both static 3D model visualisation and dynamic modelling supported by the framework, embodied energy (carbon), waste and associated costs can be analysed in the boundary of cradle-to-gate, construction, operation, and demolition. The proposed holistic modelling framework provides a possibility to analyse embodied carbon and waste from different building lifecycle perspectives including associated costs. It brings together existing segmented embodied carbon and waste estimation into a unified model, so that interactions between various parameters through the different building lifecycle phases can be better understood. Thus, it can improve design-decision support for optimal low impact building development. The applicability of this framework is anticipated being developed and tested on industrial projects in the near future.
Resumo:
This paper describes a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation models using the extended Kalman filter. The method involves the use of a time-varying linearisation of a semi-explicit index one differential-algebraic equation. The estimation technique consists of a simplified extended Kalman filter that is integrated with the differential-algebraic equation model. The paper describes a simulation study using a model of a batch chemical reactor. It also reports a study based on experimental data obtained from a mixing process, where the model of the system is solved using the sequential modular method and the estimation involves a bank of extended Kalman filters.
Resumo:
People with disabilities such as quadriplegia can use mouth-sticks and head-sticks as extension devices to perform desired manipulations. These extensions provide extended proprioception which allows users to directly feel forces and other perceptual cues such as texture present at the tip of the mouth-stick. Such devices are effective for two principle reasons: because of their close contact with the user's tactile and proprioceptive sensing abilities; and because they tend to be lightweight and very stiff, and can thus convey tactile and kinesthetic information with high-bandwidth. Unfortunately, traditional mouth-sticks and head-sticks are limited in workspace and in the mechanical power that can be transferred because of user mobility and strength limitations. We describe an alternative implementation of the head-stick device using the idea of a virtual head-stick: a head-controlled bilateral force-reflecting telerobot. In this system the end-effector of the slave robot moves as if it were at the tip of an imaginary extension of the user's head. The design goal is for the system is to have the same intuitive operation and extended proprioception as a regular mouth-stick effector but with augmentation of workspace volume and mechanical power. The input is through a specially modified six DOF master robot (a PerForceTM hand-controller) whose joints can be back-driven to apply forces at the user's head. The manipulation tasks in the environment are performed by a six degree-of-freedom slave robot (the Zebra-ZEROTM) with a built-in force sensor. We describe the prototype hardware/software implementation of the system, control system design, safety/disability issues, and initial evaluation tasks.
Resumo:
Assessment of the risk to human health posed by contaminated land may be seriously overestimated if reliant on total pollutant concentration. In vitro extraction tests, such as the physiologically based extraction test (PBET), imitate the physicochemical conditions of the human gastro-intestinal tract and offer a more practicable alternative for routine testing purposes. However, even though passage through the colon accounts for approximately 80% of the transit time through the human digestive tract and the typical contents of the colon in vivo are a carbohydrate-rich aqueous medium with the potential to promote desorption of organic pollutants, PBET comprises stomach and small intestine compartments only. Through addition of an eight-hour colon compartment to PBET and use of a carbohydrate-rich fed-state medium we demonstrated that colon-extended PBET (CE-PBET) in- creased assessments of soil-bound PAH bioaccessibility by up to 50% in laboratory soils and a factor of 4 in field soils. We attribute this increased bioaccessibility to a combination of the additional extraction time and the presence of carbohydrates in the colon compartment, both of which favor PAH desorption from soil. We propose that future assessments of the bioaccessibility of organic pollutants in soils using physiologically based extraction tests should have a colon compartment as in CE-PBET.
Resumo:
The extent of where magnetic reconnection (MR), the dominant process responsible for energy and plasma transport into the magnetosphere, operates across Earth’s dayside magnetopause has previously been only indirectly shown by observations. We report the first direct evidence of X-line structure resulting from the operation of MR at each of two widely separated locations along the tilted, subsolar line of maximum current on Earth’s magnetopause, confirming the operation of MR at two or more sites across the extended region where MR is expected to occur. The evidence results from in-situ observations of the associated ion and electron plasma distributions, present within each magnetic X-line structure, taken by two spacecraft passing through the active MR regions simultaneously.