25 resultados para Expectation-conditional Maximization (ecm)
Resumo:
The planning of semi-autonomous vehicles in traffic scenarios is a relatively new problem that contributes towards the goal of making road travel by vehicles free of human drivers. An algorithm needs to ensure optimal real time planning of multiple vehicles (moving in either direction along a road), in the presence of a complex obstacle network. Unlike other approaches, here we assume that speed lanes are not present and that different lanes do not need to be maintained for inbound and outbound traffic. Our basic hypothesis is to carry forward the planning task to ensure that a sufficient distance is maintained by each vehicle from all other vehicles, obstacles and road boundaries. We present here a 4-layer planning algorithm that consists of road selection (for selecting the individual roads of traversal to reach the goal), pathway selection (a strategy to avoid and/or overtake obstacles, road diversions and other blockages), pathway distribution (to select the position of a vehicle at every instance of time in a pathway), and trajectory generation (for generating a curve, smooth enough, to allow for the maximum possible speed). Cooperation between vehicles is handled separately at the different levels, the aim being to maximize the separation between vehicles. Simulated results exhibit behaviours of smooth, efficient and safe driving of vehicles in multiple scenarios; along with typical vehicle behaviours including following and overtaking.
Resumo:
Theory and treatment for childhood anxiety disorders typically implicates children’s negative cognitions, yet little is known about the characteristics of thinking styles of clinically anxious children. In particular, it is unclear whether differences in thinking styles between children with anxiety disorders and non-anxious children vary as a function of child age, whether particular cognitive distortions are associated with childhood anxiety disorders at different child ages, and whether cognitive content is disorder-specific. The current study addressed these questions among 120 7 - 12 year old children (53% female) who met diagnostic criteria for social anxiety disorder, other anxiety disorder, or who were not currently anxious. Contrary to expectations, threat interpretation was not inflated amongst anxious compared to non-anxious children at any age, although older (10 - 12 year old) anxious children did differ from non-anxious children on measures of perceived coping. The notion of cognitive-content specificity was not supported across the age-range. The findings challenge current treatment models of childhood anxiety, and suggest that a focus on changing anxious children’s cognitions is not warranted in mid-childhood, and in late childhood cognitive approaches may be better focussed on promoting children’s perceptions of control rather than challenging threat interpretations.
Resumo:
BACKGROUND: this study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. METHODS: a case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant [NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: the genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. CONCLUSIONS: Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.
Resumo:
OBJECTIVE: To evaluate whether polymorphisms in the peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PPARGC1A) gene were related to body fat in Asian Indians. METHODS: Three polymorphisms of PPARGC1A gene, the Thr394Thr, Gly482Ser and +A2962G, were genotyped on 82 type 2 diabetic and 82 normal glucose tolerant (NGT) subjects randomly chosen from the Chennai Urban Rural Epidemiology Study using PCR-RFLP, and the nature of the variants were confirmed using direct sequencing. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies using an expectation-maximization algorithm. Visceral, subcutaneous and total abdominal fat were measured using computed tomography, whereas dual X-ray absorptiometry was used to measure central abdominal and total body fat. RESULTS: None of the three polymorphisms studied were in LD. The genotype (0.59 vs 0.32, P=0.001) and allele (0.30 vs 0.17, P=0.007) frequencies of Thr394Thr polymorphism were significantly higher in type 2 diabetic subjects compared to those in NGT subjects. The odds ratio for diabetes (adjusted for age, sex and body mass index) for the susceptible genotype, XA (GA+AA) of Thr394Thr polymorphism, was 2.53 (95% confidence intervals: 1.30-5.04, P=0.009). Visceral and subcutaneous fat were significantly higher in NGT subjects with XA genotype of the Thr394Thr polymorphism compared to those with GG genotype (visceral fat: XA 148.2+/-46.9 vs GG 106.5+/-51.9 cm(2), P=0.001; subcutaneous fat: XA 271.8+/-167.1 vs GG 181.5+/-78.5 cm(2), P=0.001). Abdominal (XA 4521.9+/-1749.6 vs GG 3445.2+/-1443.4 g, P=0.004), central abdominal (XA 1689.0+/-524.0 vs GG 1228.5+/-438.7 g, P<0.0001) and non-abdominal fat (XA 18763.8+/-8789.4 vs GG 13160.4+/-4255.3 g, P<0.0001) were also significantly higher in the NGT subjects with XA genotype compared to those with GG genotype. The Gly482Ser and +A2962G polymorphisms were not associated with any of the body fat measures. CONCLUSION: Among Asian Indians, the Thr394Thr (G --> A) polymorphism is associated with increased total, visceral and subcutaneous body fat.
Resumo:
AIMS: The objective of the present investigation was to examine the relationship of three polymorphisms, Thr394Thr, Gly482Ser and +A2962G, of the peroxisome proliferator activated receptor-gamma co-activator-1 alpha (PGC-1alpha) gene with Type 2 diabetes in Asian Indians. METHODS: The study group comprised 515 Type 2 diabetic and 882 normal glucose tolerant subjects chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The three polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Haplotype frequencies were estimated using an expectation-maximization (EM) algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: The three polymorphisms studied were not in linkage disequilibrium. With respect to the Thr394Thr polymorphism, 20% of the Type 2 diabetic patients (103/515) had the GA genotype compared with 12% of the normal glucose tolerance (NGT) subjects (108/882) (P = 0.0004). The frequency of the A allele was also higher in Type 2 diabetic subjects (0.11) compared with NGT subjects (0.07) (P = 0.002). Regression analysis revealed the odds ratio for Type 2 diabetes for the susceptible genotype (XA) to be 1.683 (95% confidence intervals: 1.264-2.241, P = 0.0004). Age adjusted glycated haemoglobin (P = 0.003), serum cholesterol (P = 0.001) and low-density lipoprotein (LDL) cholesterol (P = 0.001) levels and systolic blood pressure (P = 0.001) were higher in the NGT subjects with the XA genotype compared with GG genotype. There were no differences in genotype or allelic distribution between the Type 2 diabetic and NGT subjects with respect to the Gly482Ser and +A2962G polymorphisms. CONCLUSIONS: The A allele of Thr394Thr (G --> A) polymorphism of the PGC-1 gene is associated with Type 2 diabetes in Asian Indian subjects and the XA genotype confers 1.6 times higher risk for Type 2 diabetes compared with the GG genotype in this population.
Resumo:
We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
We explore the mutual dependencies and interactions among different groups of species of the plankton population, based on an analysis of the long-term field observations carried out by our group in the North–West coast of the Bay of Bengal. The plankton community is structured into three groups of species, namely, non-toxic phytoplankton (NTP), toxic phytoplankton (TPP) and zooplankton. To find the pair-wise dependencies among the three groups of plankton, Pearson and partial correlation coefficients are calculated. To explore the simultaneous interaction among all the three groups, a time series analysis is performed. Following an Expectation Maximization (E-M) algorithm, those data points which are missing due to irregularities in sampling are estimated, and with the completed data set a Vector Auto-Regressive (VAR) model is analyzed. The overall analysis demonstrates that toxin-producing phytoplankton play two distinct roles: the inhibition on consumption of toxic substances reduces the abundance of zooplankton, and the toxic materials released by TPP significantly compensate for the competitive disadvantages among phytoplankton species. Our study suggests that the presence of TPP might be a possible cause for the generation of a complex interaction among the large number of phytoplankton and zooplankton species that might be responsible for the prolonged coexistence of the plankton species in a fluctuating biomass.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.