255 resultados para Essa (Meteorological satellite)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using data from the EISCAT (European Incoherent Scatter) VHF radar and DMSP (Defense Meteorological Satellite Program) spacecraft passes, we study the motion of the dayside open-closed field line boundary during two substorm cycles. The satellite data show that the motions of ion and electron temperature boundaries in EISCAT data, as reported by Moen et al. (2004), are not localised around the radar; rather, they reflect motions of the open-closed field line boundary at all MLT throughout the dayside auroral ionosphere. The boundary is shown to erode equatorward when the IMF points southward, consistent with the effect of magnetopause reconnection. During the substorm expansion and recovery phases, the dayside boundary returns poleward, whether the IMF points northward or southward. However, the poleward retreat was much faster during the substorm for which the IMF had returned to northward than for the substorm for which the IMF remained southward – even though the former substorm is much the weaker of the two. These poleward retreats are consistent with the destruction of open flux at the tail current sheet. Application of a new analysis of the peak ion energies at the equatorward edge of the cleft/cusp/mantle dispersion seen by the DMSP satellites identifies the dayside reconnection merging gap to extend in MLT from about 9.5 to 15.5 h for most of the interval. Analysis of the boundary motion, and of the convection velocities seen near the boundary by EISCAT, allows calculation of the reconnection rate (mapped down to the ionosphere) from the flow component normal to the boundary in its own rest frame. This reconnection rate is not, in general, significantly different from zero before 06:45 UT (MLT<9.5 h) – indicating that the X line footprint expands over the EISCAT field-of-view to earlier MLT only occasionally and briefly. Between 06:45 UT and 12:45UT (9.5

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interpretation of structure in cusp ion dispersions is important for helping to understand the temporal and spatial structure of magnetopause reconnection. “Stepped” and “sawtooth” signatures have been shown to be caused by temporal variations in the reconnection rate under the same physical conditions for different satellite trajectories. The present paper shows that even for a single satellite path, a change in the amplitude of any reconnection pulses can alter the observed signature and even turn sawtooth into stepped forms and vice versa. On 20 August 1998, the Defense Meteorological Satellite Program (DMSP) craft F-14 crossed the cusp just to the south of Longyearbyen, returning on the following orbit. The two passes by the DMSP F-14 satellites have very similar trajectories and the open-closed field line boundary (OCB) crossings, as estimated from the SSJ/4 precipitating particle data and Polar UVI images, imply a similarly-shaped polar cap, yet the cusp ion dispersion signatures differ substantially. The cusp crossing at 08:54 UT displays a stepped ion dispersion previously considered to be typical of a meridional pass, whereas the crossing at 10:38 UT is a sawtooth form ion dispersion, previously considered typical of a satellite travelling longitudinally with respect to the OCB. It is shown that this change in dispersed ion signature is likely to be due to a change in the amplitude of the pulses in the reconnection rate, causing the stepped signature. Modelling of the low-energy ion cutoff under different conditions has reproduced the forms of signature observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report simultaneous global monitoring of a patch of ionization and in situ observation of ion upflow at the center of the polar cap region during a geomagnetic storm. Our observations indicate strong fluxes of upwelling O+ ions originating from frictional heating produced by rapid antisunward flow of the plasma patch. The statistical results from the crossings of the central polar cap region by Defense Meteorological Satellite Program F16–F18 from 2010 to 2013 confirm that the field-aligned flow can turn upward when rapid antisunward flows appear, with consequent significant frictional heating of the ions, which overcomes the gravity effect. We suggest that such rapidly moving patches can provide an important source of upwelling ions in a region where downward flows are usually expected. These observations give new insight into the processes of ionosphere-magnetosphere coupling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As part of its Data User Element programme, the European Space Agency funded the GlobMODEL project which aimed at investigating the scientific, technical, and organizational issues associated with the use and exploitation of remotely-sensed observations, particularly from new sounders. A pilot study was performed as a "demonstrator" of the GlobMODEL idea, based on the use of new data, with a strong European heritage, not yet assimilated operationally. Two parallel assimilation experiments were performed, using either total column ozone or ozone profiles retrieved at the Royal Netherlands Meteorological Institute (KNMI) from the Ozone Monitoring Instrument (OMI). In both cases, the impact of assimilating OMI data in addition to the total ozone columns from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Centre for Medium Range Weather Forecasts (ECMWF) ozone analyses was assessed by means of independent measurements. We found that the impact of OMI total columns is mainly limited to the region between 20 and 80 hPa, and is particularly important at high latitudes in the Southern hemisphere where the stratospheric ozone transport and chemical depletion are generally difficult to model with accuracy. Furthermore, the assimilation experiments carried out in this work suggest that OMI DOAS (Differential Optical Absorption Spectroscopy) total ozone columns are on average larger than SCIAMACHY total columns by up to 3 DU, while OMI total columns derived from OMI ozone profiles are on average about 8 DU larger than SCIAMACHY total columns. At the same time, the demonstrator brought to light a number of issues related to the assimilation of atmospheric composition profiles, such as the shortcomings arising when the vertical resolution of the instrument is not properly accounted for in the assimilation. The GlobMODEL demonstrator accelerated scientific and operational utilization of new observations and its results - prompted ECMWF to start the operational assimilation of OMI total column ozone data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved algorithm for the generation of gridded window brightness temperatures is presented. The primary data source is the International Satellite Cloud Climatology Project, level B3 data, covering the period from July 1983 to the present. The algorithm rakes window brightness, temperatures from multiple satellites, both geostationary and polar orbiting, which have already been navigated and normalized radiometrically to the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer, and generates 3-hourly global images on a 0.5 degrees by 0.5 degrees latitude-longitude grid. The gridding uses a hierarchical scheme based on spherical kernel estimators. As part of the gridding procedure, the geostationary data are corrected for limb effects using a simple empirical correction to the radiances, from which the corrected temperatures are computed. This is in addition to the application of satellite zenith angle weighting to downweight limb pixels in preference to nearer-nadir pixels. The polar orbiter data are windowed on the target time with temporal weighting to account for the noncontemporaneous nature of the data. Large regions of missing data are interpolated from adjacent processed images using a form of motion compensated interpolation based on the estimation of motion vectors using an hierarchical block matching scheme. Examples are shown of the various stages in the process. Also shown are examples of the usefulness of this type of data in GCM validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An interface between satellite retrievals and the incremental version of the four-dimensional variational assimilation scheme is developed, making full use of the information content of satellite measurements. In this paper, expressions for the function that calculates simulated observations from model states (called “observation operator”), together with its tangent linear version and adjoint, are derived. Results from our work can be used for implementing a quasi-optimal assimilation of satellite retrievals (e.g., of atmospheric trace gases) in operational meteorological centres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite measurements and numerical forecast model reanalysis data are used to compute an updated estimate of the cloud radiative effect on the global multi-annual mean radiative energy budget of the atmosphere and surface. The cloud radiative cooling effect through reflection of shortwave radiation dominates over the longwave heating effect, resulting in a net cooling of the climate system of –21 Wm-2. The shortwave radiative effect of cloud is primarily manifest as a reduction in the solar radiation absorbed at the surface of -53 Wm-2. Clouds impact longwave radiation by heating the moist tropical atmosphere (up to around 40 Wm-2 for global annual means) while enhancing the radiative cooling of the atmosphere over other regions, in particular higher latitudes and sub-tropical marine stratocumulus regimes. While clouds act to cool the climate system during the daytime, the cloud greenhouse effect heats the climate system at night. The influence of cloud radiative effect on determining cloud feedbacks and changes in the water cycle are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependence of much of Africa on rain fed agriculture leads to a high vulnerability to fluctuations in rainfall amount. Hence, accurate monitoring of near-real time rainfall is particularly useful, for example in forewarning possible crop shortfalls in drought-prone areas. Unfortunately, ground based observations are often inadequate. Rainfall estimates from satellite-based algorithms and numerical model outputs can fill this data gap, however rigorous assessment of such estimates is required. In this case, three satellite based products (NOAA-RFE 2.0, GPCP-1DD and TAMSAT) and two numerical model outputs (ERA-40 and ERA-Interim) have been evaluated for Uganda in East Africa using a network of 27 rain gauges. The study focuses on the years 2001 to 2005 and considers the main rainy season (February to June). All data sets were converted to the same temporal and spatial scales. Kriging was used for the spatial interpolation of the gauge data. All three satellite products showed similar characteristics and had a high level of skill that exceeded both model outputs. ERA-Interim had a tendency to overestimate whilst ERA-40 consistently underestimated the Ugandan rainfall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data. It effectively widens the active–passive retrieved cross-section (RXS) of cloud properties, thereby enabling computation of radiative fluxes and radiances that can be compared with measured values in an attempt to perform radiative closure experiments that aim to assess the RXS. For this introductory study, A-train data were used to verify the scene-construction algorithm and only 1D radiative transfer calculations were performed. The construction algorithm fills off-RXS recipient pixels by computing sums of squared differences (a cost function F) between their spectral radiances and those of potential donor pixels/columns on the RXS. Of the RXS pixels with F lower than a certain value, the one with the smallest Euclidean distance to the recipient pixel is designated as the donor, and its retrieved cloud properties and other attributes such as 1D radiative heating rates are consigned to the recipient. It is shown that both the RXS itself and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery can be reconstructed extremely well using just visible and thermal infrared channels. Suitable donors usually lie within 10 km of the recipient. RXSs and their associated radiative heating profiles are reconstructed best for extensive planar clouds and less reliably for broken convective clouds. Domain-average 1D broadband radiative fluxes at the top of theatmosphere(TOA)for (21 km)2 domains constructed from MODIS, CloudSat andCloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data agree well with coincidental values derived from Clouds and the Earth’s Radiant Energy System (CERES) radiances: differences betweenmodelled and measured reflected shortwave fluxes are within±10Wm−2 for∼35% of the several hundred domains constructed for eight orbits. Correspondingly, for outgoing longwave radiation∼65% are within ±10Wm−2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An unusually strong and prolonged stratospheric sudden warming (SSW) in January 2006 was the first major SSW for which globally distributed long-lived trace gas data are available covering the upper troposphere through the lower mesosphere. We use Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) data, the SLIMCAT Chemistry Transport Model (CTM), and assimilated meteorological analyses to provide a comprehensive picture of transport during this event. The upper tropospheric ridge that triggered the SSW was associated with an elevated tropopause and layering in trace gas profiles in conjunction with stratospheric and tropospheric intrusions. Anomalous poleward transport (with corresponding quasi-isentropic troposphere-to-stratosphere exchange at the lowest levels studied) in the region over the ridge extended well into the lower stratosphere. In the middle and upper stratosphere, the breakdown of the polar vortex transport barrier was seen in a signature of rapid, widespread mixing in trace gases, including CO, H2O, CH4 and N2O. The vortex broke down slightly later and more slowly in the lower than in the middle stratosphere. In the middle and lower stratosphere, small remnants with trace gas values characteristic of the pre-SSW vortex lingered through the weak and slow recovery of the vortex. The upper stratospheric vortex quickly reformed, and, as enhanced diabatic descent set in, CO descended into this strong vortex, echoing the fall vortex development. Trace gas evolution in the SLIMCAT CTM agrees well with that in the satellite trace gas data from the upper troposphere through the middle stratosphere. In the upper stratosphere and lower mesosphere, the SLIMCAT simulation does not capture the strong descent of mesospheric CO and H2O values into the reformed vortex; this poor CTM performance in the upper stratosphere and lower mesosphere results primarily from biases in the diabatic descent in assimilated analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the techniques used to obtain sea surface temperature (SST) retrievals from the Geostationary Operational Environmental Satellite 12 (GOES-12) at the National Oceanic and Atmospheric Administration’s Office of Satellite Data Processing and Distribution. Previous SST retrieval techniques relying on channels at 11 and 12 μm are not applicable because GOES-12 lacks the latter channel. Cloud detection is performed using a Bayesian method exploiting fast-forward modeling of prior clear-sky radiances using numerical weather predictions. The basic retrieval algorithm used at nighttime is based on a linear combination of brightness temperatures at 3.9 and 11 μm. In comparison with traditional split window SSTs (using 11- and 12-μm channels), simulations show that this combination has maximum scatter when observing drier colder scenes, with a comparable overall performance. For daytime retrieval, the same algorithm is applied after estimating and removing the contribution to brightness temperature in the 3.9-μm channel from solar irradiance. The correction is based on radiative transfer simulations and comprises a parameterization for atmospheric scattering and a calculation of ocean surface reflected radiance. Potential use of the 13-μm channel for SST is shown in a simulation study: in conjunction with the 3.9-μm channel, it can reduce the retrieval error by 30%. Some validation results are shown while a companion paper by Maturi et al. shows a detailed analysis of the validation results for the operational algorithms described in this present article.