18 resultados para Enzymes activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biocidal treatment of soil is used to remove or inhibit soil microbial activity, and thus provides insight into the relationship between soil biology and soil processes. Chemical (soil pH, phosphodiesterase, protease) and biological (substrate induced respiration) characteristics of three contrasting soils from tropical savanna ecosystems in north Queensland, Australia were measured in field fresh samples and following autoclaving (121 °C/103 kPa for 30 min on two consecutive days). Autoclaving treatment killed the active soil microbial biomass and significantly decreased protease activity (∼90%) in all three soils. Phosphodiesterase activity in kaolinitic soils also significantly decreased by 78% and 92%. However, autoclave treatment of smectitic soil only decreased phosphodiesterase activity by 4% only. This study demonstrates phosphodiesterase can remain stable in extreme conditions. This might be a characteristic vital to the cycling of phosphorus in shrink–swell clays in Australian tropical savanna ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hebeloma strains of arctic and temperature origin, grown at 22° or 6°, were assayed for wall-bound and extracellular acid phosphomonoesterase (pNPPase) across a temperature range 2-37°. Only when grown at 6° was a cold active extracellular pNPPase induced in all the arctic strains and most of the temperature strains tested. Such enzymes are suggested to be a adaptation to low soil temperatures, and are discussed in the context of ectomycorrhizal access to soil PO4− monoesters at low temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in land management practices may have significant implications for soil microbial communities important in organic P turnover. Soil bacteria can increase plant P availability by excreting phosphatase enzymes which catalyze the hydrolysis of ester-phosphate bonds. Examining the diversity and abundance of alkaline phosphatase gene harboring bacteria may provide valuable insight into alkaline phosphatase production in soils. This study examined the effect of 20 years of no input organic (ORG), organic with composted manure (ORG + M), conventional (CONV) and restored prairie (PRA) management on soil P bioavailability, alkaline phosphatase activity (ALP), and abundance and diversity of ALP gene (phoD) harboring bacteria in soils from the northern Great Plains of Canada. Management system influenced bioavailable P (P < 0.001), but not total P, with the lowest concentrations in the ORG systems and the highest in PRA. Higher rates of ALP were observed in the ORG and ORG + M treatments with a significant negative correlation between bioavailable P and ALP in 2011 (r2 = 0.71; P = 0.03) and 2012 (r2 = 0.51; P = 0.02), suggesting that ALP activity increased under P limiting conditions. The phoD gene abundance was also highest in ORG and ORG + M resulting in a significant positive relationship between bacterial phoD abundance and ALP activity (r2 = 0.71; P = 0.009). Analysis of phoD bacterial community fingerprints showed a higher number of species in CONV compared to ORG and ORG + M, contrary to what was expected considering greater ALP activity under ORG management. In 2012, banding profiles of ORG + M showed fewer phoD bacterial species following the second manure application, although ALP activity is higher than in 2011. This indicates that a few species may be producing more ALP and that quantitative gene analysis was a better indicator of activity than the number of species present.