90 resultados para Energy performance rating
Resumo:
There is growing pressure on the construction industry to deliver energy efficient, sustainable buildings but there is evidence to suggest that, in practice, designs regularly fail to achieve the anticipated levels of in-use energy consumption. One of the key factors behind this discrepancy is the behavior of the building occupants. This paper explores how insights from experimental psychology could potentially be used to reduce the gap between the predicted and actual energy performance of buildings. It demonstrates why traditional methods to engage with the occupants are not always successful and proposes a model for a more holistic approach to this issue. The paper concludes that achieving energy efficiency in buildings is not solely a technological issue and that the construction industry needs to adopt a more user-centred approach.
Resumo:
Commercial kitchens often leave a large carbon footprint. A new dataset of energy performance metrics from a leading industrial partner is presented. Categorising these types of buildings is challenging. Electricity use has been analysed using data from automated meter readings (AMR) for the purpose of benchmarking and discussed in terms of factors such as size and food output. From the analysed results, consumption is found to be almost double previous sector estimates of 6480 million kWh per year. Recommendations are made to further improve the current benchmarks in order to attain robust, reliable and transparent figures, such as the introduction of normalised performance indicators to include kitchen size (m2) and kWh per thousand-pound turnover.
Resumo:
Taking a perspective from a whole building lifecycle, occupier's actions could account for about 50% of energy. However occupants' activities influence building energy performance is still a blind area. Building energy performance is thought to be the result of a combination of building fabrics, building services and occupants' activities, along with their interactions. In this sense, energy consumption in built environment is regarded as a socio-technical system. In order to understand how such a system works, a range of physical, technical and social information is involved that needs to be integrated and aligned. This paper has proposed a semiotic framework to add value for Building Information Modelling, incorporating energy-related occupancy factors in a context of office buildings. Further, building information has been addressed semantically to describe a building space from the facility management perspective. Finally, the framework guides to set up building information representation system, which can help facility managers to manage buildings efficiently by improving their understanding on how office buildings are operated and used.
Resumo:
The behaviour of building occupants can have a significant impact on in-use energy performance. In these pilot studies, based on the Elaboration Likelihood Model, interactivity was incorporated in the design of behavioural interventions to assess its effectiveness in promoting energy-saving behaviours. An interactive poster and an interactive prompt were designed to ‘nudge’ occupants’ behaviours towards energy-saving. The poster was installed in an office building and was intended to encourage occupants to save energy by taking the stairs, rather than the lifts, by providing them with cumulative metaphorical feedback. The prompt was installed in student halls of residence and intended to act as a reminder to the occupants to turn the lights off by providing them with an immediate playful reward. The results showed that interactivity can ‘nudge’ occupants’ behaviours when it is combined with a clear message/feedback. The results also suggest that simple immediate feedback can be effective in encouraging energy-efficient behaviours.
Resumo:
Different treatments that could be implemented in the home environ-ment are evaluated with the objective of reaching a more rational and efficient use of energy. We consider that a detailed knowledge of energy-consuming behaviour is paramount for the development and implementation of new technologies, services and even policies that could result in more rational energy use. The proposed evaluation methodology is based on the development of economic experiments implemented in an experimental economics laboratory, where the behaviour of individuals when making decisions related to energy use in the domestic environment can be tested.
Resumo:
Urban microclimates are greatly affected by urban form and texture and have a significant impact on building energy performance. The impact of urban form on energy consumption in buildings mainly relates to the availability of the uses of solar radiation, daylighting and natural ventilation. The urban heat island (UHI) effect increases the risk of overheating in buildings as well as the maximum energy demand for cooling. A need has arisen for a robust calculation tool (using the first-cut calculation method) to enable planners, architects and environmental assessors, to quickly and accurately compare the impact of different urban forms on local climate and UHI mitigation strategies. This paper describes a tool for the simulation of urban microclimates, which is developed by integrating image processing with a coupled thermal and airflow model.
Resumo:
Airflow through urban environments is one of the most important factors affecting human health, outdoor and indoor thermal comfort, air quality and the energy performance of buildings. This paper presents a study on the effects of wind induced airflows through urban built form using statistical analysis. The data employed in the analysis are from the year-long simultaneous field measurements conducted at the University of Reading campus in the United Kingdom. In this study, the association between typical architectural forms and the wind environment are investigated; such forms include: a street canyon, a semi-closure, a courtyard form and a relatively open space in a low-rise building complex. Measured data captures wind speed and wind direction at six representative locations and statistical analysis identifies key factors describing the effects of built form on the resulting airflows. Factor analysis of the measured data identified meteorological and architectural layout factors as key factors. The derivation of these factors and their variation with the studied built forms are presented in detail.
Resumo:
Purpose – Progress in retrofitting the UK's commercial properties continues to be slow and fragmented. New research from the UK and USA suggests that radical changes are needed to drive large-scale retrofitting, and that new and innovative models of financing can create new opportunities. The purpose of this paper is to offer insights into the terminology of retrofit and the changes in UK policy and practice that are needed to scale up activity in the sector. Design/methodology/approach – The paper reviews and synthesises key published research into commercial property retrofitting in the UK and USA and also draws on policy and practice from the EU and Australia. Findings – The paper provides a definition of “retrofit”, and compares and contrasts this with “refurbishment” and “renovation” in an international context. The paper summarises key findings from recent research and suggests that there are a number of policy and practice measures which need to be implemented in the UK for commercial retrofitting to succeed at scale. These include improved funding vehicles for retrofit; better transparency in actual energy performance; and consistency in measurement, verification and assessment standards. Practical implications – Policy and practice in the UK needs to change if large-scale commercial property retrofit is to be rolled out successfully. This requires mandatory legislation underpinned by incentives and penalties for non-compliance. Originality/value – This paper synthesises recent research to provide a set of policy and practice recommendations which draw on international experience, and can assist on implementation in the UK.
Resumo:
This paper aims to address the characteristics of urban microclimates that affect the building energy performance and implementation of the renewable energy technologies. An experimental campaign was designed to investigate the microclimate parameters including air and surface temperature, direct and diffuse solar irradiation levels on both horizontal and vertical surfaces, wind speed and direction in a dense urban area in London. The outcomes of this research reveal that the climatic parameters are significantly influenced by the attributes of urban textures, which highlight the need for both providing the microclimatic information and using them in buildings design stages. This research provides a valuable set of microclimatic information for a dense urban area in London. According to the outcomes of this research, the feasibility study for implementation of renewable energy technologies and the thermal/ energy performance assessment of buildings need to be conducted using the microclimatic information rather than the meteorological weather data mostly collected from non-urban environments.
Resumo:
It is widely accepted that there is a gap between design energy and real world operational energy consumption. The behaviour of occupants is often cited as an important factor influencing building energy performance. However, its consideration, both during design and operation, is overly simplistic, often assuming a direct link between attitudes and behaviour. Alternative models of decision making from psychology highlight a range of additional influential factors and emphasise that occupants do not always act in a rational manner. Developing a better understanding of occupant decision making could help inform office energy conservation campaigns as well as models of behaviour employed during the design process. This paper assesses the contribution of various behavioural constructs on small power consumption in offices. The method is based upon the Theory of Planned Behaviour (TPB) which assumes that intention is driven by three factors: attitude, subjective norms, and perceived behavioural control, but we also consider a fourth construct: habit measured through the Self- Report Habit Index (SRHI). A questionnaire was issued to 81 participants in two UK offices. Questionnaire results for each behavioural construct were correlated against each participant’s individual workstation electricity consumption. The intentional processes proposed by TPB could not account for the observed differences in occupants’ interactions with small power appliances. Instead, occupants were interacting with small power “automatically”, with habit accounting for 11% of the variation in workstation energy consumption. The implications for occupant behaviour models and employee engagement campaigns are discussed.
Resumo:
The United Kingdom is committed to a raft of requirements to create a low-carbon economy. Buildings consume approximately 40% of UK energy demand. Any improvement on the energy performance of buildings therefore can significantly contribute to the delivery of a low-carbon economy. The challenge for the construction sector and its clients is how to meet the policy requirements to deliver low and zero carbon (LZC) buildings, which spans broader than the individual building level, to requirements at the local and regional levels, and wider sustainability pressures. Further, the construction sector is reporting skills shortages coupled with the need for ‘new skills’ for the delivery of LZC buildings. The aim of this paper is to identify, and better understand, the skills required by the construction sector and its clients for the delivery of LZC buildings within a region. The theoretical framing for this research is regional innovation system (RIS) using a socio-technical network analysis (STNA) methodology. A case study of a local authority region is presented. Data is drawn from a review of relevant local authority documentation, observations and semi-structured interviews from one (project 1) of five school retrofit projects within the region. The initial findings highlight the complexity surrounding the form and operation of the LZC network for project 1. The skills required by the construction sector and its clients are connected to different actor roles surrounding the delivery of the project. The key actors involved and their required skills are: project management and energy management skills required by local authority; project management skills (in particular project planning), communication and research skills required by school end-users; and a ‘technical skill’ relating to knowledge of a particular energy efficient measure (EEM) and use of equipment to implement the EEM is required by the EEM contractors.
Resumo:
Adaptive filters used in code division multiple access (CDMA) receivers to counter interference have been formulated both with and without the assumption of training symbols being transmitted. They are known as training-based and blind detectors respectively. We show that the convergence behaviour of the blind minimum-output-energy (MOE) detector can be quite easily derived, unlike what was implied by the procedure outlined in a previous paper. The simplification results from the observation that the correlation matrix determining convergence performance can be made symmetric, after which many standard results from the literature on least mean square (LMS) filters apply immediately.