84 resultados para Empirical Flow Models


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the plausible model of activated carbon proposed by Harris and co-workers and grand canonical Monte Carlo simulations, we study the applicability of standard methods for describing adsorption data on microporous carbons widely used in adsorption science. Two carbon structures are studied, one with a small distribution of micropores in the range up to 1 nm, and the other with micropores covering a wide range of porosity. For both structures, adsorption isotherms of noble gases (from Ne to Xe), carbon tetrachloride and benzene are simulated. The data obtained are considered in terms of Dubinin-Radushkevich plots. Moreover, for benzene and carbon tetrachloride the temperature invariance of the characteristic curve is also studied. We show that using simulated data some empirical relationships obtained from experiment can be successfully recovered. Next we test the applicability of Dubinin's related models including the Dubinin-Izotova, Dubinin-Radushkevich-Stoeckli, and Jaroniec-Choma equations. The results obtained demonstrate the limits and applications of the models studied in the field of carbon porosity characterization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports the results of a parametric CFD study on idealized city models to investigate the potential of slope flow in ventilating a city located in a mountainous region when the background synoptic wind is absent. Examples of such a city include Tokyo in Japan, Los Angeles and Phoenix in the US, and Hong Kong. Two types of buoyancy-driven flow are considered, i.e., slope flow from the mountain slope (katabatic wind at night and anabatic wind in the daytime), and wall flow due to heated/cooled urban surfaces. The combined buoyancy-driven flow system can serve the purpose of dispersing the accumulated urban air pollutants when the background wind is weak or absent. The microscopic picture of ventilation performance within the urban structures was evaluated in terms of air change rate (ACH) and age of air. The simulation results reveal that the slope flow plays an important role in ventilating the urban area, especially in calm conditions. Katabatic flow at night is conducive to mitigating the nocturnal urban heat island. In the present parametric study, the mountain slope angle and mountain height are assumed to be constant, and the changing variables are heating/cooling intensity and building height. For a typical mountain of 500 m inclined at an angle of 20° to the horizontal level, the interactive structure is very much dependent on the ratio of heating/cooling intensity as well as building height. When the building is lower than 60 m, the slope wind dominates. When the building is as high as 100 m, the contribution from the urban wall flow cannot be ignored. It is found that katabatic wind can be very beneficial to the thermal environment as well as air quality at the pedestrian level. The air change rate for the pedestrian volume can be as high as 300 ACH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We evaluated the accuracy of six watershed models of nitrogen export in streams (kg km2 yr−1) developed for use in large watersheds and representing various empirical and quasi-empirical approaches described in the literature. These models differ in their methods of calibration and have varying levels of spatial resolution and process complexity, which potentially affect the accuracy (bias and precision) of the model predictions of nitrogen export and source contributions to export. Using stream monitoring data and detailed estimates of the natural and cultural sources of nitrogen for 16 watersheds in the northeastern United States (drainage sizes = 475 to 70,000 km2), we assessed the accuracy of the model predictions of total nitrogen and nitrate-nitrogen export. The model validation included the use of an error modeling technique to identify biases caused by model deficiencies in quantifying nitrogen sources and biogeochemical processes affecting the transport of nitrogen in watersheds. Most models predicted stream nitrogen export to within 50% of the measured export in a majority of the watersheds. Prediction errors were negatively correlated with cultivated land area, indicating that the watershed models tended to over predict export in less agricultural and more forested watersheds and under predict in more agricultural basins. The magnitude of these biases differed appreciably among the models. Those models having more detailed descriptions of nitrogen sources, land and water attenuation of nitrogen, and water flow paths were found to have considerably lower bias and higher precision in their predictions of nitrogen export.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Longitudinal flow bursts observed by the European Incoherent Scatter (EISCAT) radar, in association with dayside auroral transients observed from Svalbard, have been interpreted as resulting from pulses of enhanced reconnection at the dayside magnetopause. However, an alternative model has recently been proposed for a steady rate of magnetopause reconnection, in which the bursts of longitudinal flow are due to increases in the field line curvature force, associated with the By component of the magnetosheath field. We here evaluate these two models, using observations on January 20, 1990, by EISCAT and a 630-nm all-sky camera at Ny Ålesund. For both models, we predict the behavior of both the dayside flows and the 630-nm emissions on newly opened field lines. It is shown that the signatures of steady reconnection and magnetosheath By changes could possibly resemble the observed 630-nm auroral events, but only for certain locations of the observing site, relative to the ionospheric projection of the reconnection X line: however, in such cases, the flow bursts would be seen between the 630-nm transients and not within them. On the other hand, the model of reconnection rate pulses predicts that the flows will be enhanced within each 630-nm transient auroral event. The observations on January 20, 1990, are shown to be consistent with the model of enhanced reconnection rate pulses over a background level and inconsistent with the effects of periodic enhancements of the magnitude of the magnetosheath By component. We estimate that the reconnection rate within the pulses would have to be at least an order of magnitude larger than the background level between the pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow dynamics of crystal-rich high-viscosity magma is likely to be strongly influenced by viscous and latent heat release. Viscous heating is observed to play an important role in the dynamics of fluids with temperature-dependent viscosities. The growth of microlite crystals and the accompanying release of latent heat should play a similar role in raising fluid temperatures. Earlier models of viscous heating in magmas have shown the potential for unstable (thermal runaway) flow as described by a Gruntfest number, using an Arrhenius temperature dependence for the viscosity, but have not considered crystal growth or latent heating. We present a theoretical model for magma flow in an axisymmetric conduit and consider both heating effects using Finite Element Method techniques. We consider a constant mass flux in a 1-D infinitesimal conduit segment with isothermal and adiabatic boundary conditions and Newtonian and non-Newtonian magma flow properties. We find that the growth of crystals acts to stabilize the flow field and make the magma less likely to experience a thermal runaway. The additional heating influences crystal growth and can counteract supercooling from degassing-induced crystallization and drive the residual melt composition back towards the liquidus temperature. We illustrate the models with results generated using parameters appropriate for the andesite lava dome-forming eruption at Soufriere Hills Volcano, Montserrat. These results emphasize the radial variability of the magma. Both viscous and latent heating effects are shown to be capable of playing a significant role in the eruption dynamics of Soufriere Hills Volcano. Latent heating is a factor in the top two kilometres of the conduit and may be responsible for relatively short-term (days) transients. Viscous heating is less restricted spatially, but because thermal runaway requires periods of hundreds of days to be achieved, the process is likely to be interrupted. Our models show that thermal evolution of the conduit walls could lead to an increase in the effective diameter of flow and an increase in flux at constant magma pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes benchmark testing of six two-dimensional (2D) hydraulic models (DIVAST, DIVASTTVD, TUFLOW, JFLOW, TRENT and LISFLOOD-FP) in terms of their ability to simulate surface flows in a densely urbanised area. The models are applied to a 1·0 km × 0·4 km urban catchment within the city of Glasgow, Scotland, UK, and are used to simulate a flood event that occurred at this site on 30 July 2002. An identical numerical grid describing the underlying topography is constructed for each model, using a combination of airborne laser altimetry (LiDAR) fused with digital map data, and used to run a benchmark simulation. Two numerical experiments were then conducted to test the response of each model to topographic error and uncertainty over friction parameterisation. While all the models tested produce plausible results, subtle differences between particular groups of codes give considerable insight into both the practice and science of urban hydraulic modelling. In particular, the results show that the terrain data available from modern LiDAR systems are sufficiently accurate and resolved for simulating urban flows, but such data need to be fused with digital map data of building topology and land use to gain maximum benefit from the information contained therein. When such terrain data are available, uncertainty in friction parameters becomes a more dominant factor than topographic error for typical problems. The simulations also show that flows in urban environments are characterised by numerous transitions to supercritical flow and numerical shocks. However, the effects of these are localised and they do not appear to affect overall wave propagation. In contrast, inertia terms are shown to be important in this particular case, but the specific characteristics of the test site may mean that this does not hold more generally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G-Rex is light-weight Java middleware that allows scientific applications deployed on remote computer systems to be launched and controlled as if they are running on the user's own computer. G-Rex is particularly suited to ocean and climate modelling applications because output from the model is transferred back to the user while the run is in progress, which prevents the accumulation of large amounts of data on the remote cluster. The G-Rex server is a RESTful Web application that runs inside a servlet container on the remote system, and the client component is a Java command line program that can easily be incorporated into existing scientific work-flow scripts. The NEMO and POLCOMS ocean models have been deployed as G-Rex services in the NERC Cluster Grid, and G-Rex is the core grid middleware in the GCEP and GCOMS e-science projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsaturated zone exerts a major control on the delivery of nutrients to Chalk streams, yet flow and transport processes in this complex, dual-porosity medium have remained controversial. A major challenge arises in characterising these processes, both at the detailed mechanistic level and at an appropriate level for inclusion within catchment-scale models for nutrient management. The lowland catchment research (LOCAR) programme in the UK has provided a unique set of comprehensively instrumented groundwater-dominated catchments. Of these, the Pang and Lambourn, tributaries of the Thames near Reading, have been a particular focus for research into subsurface processes and surface water-groundwater interactions. Data from LOCAR and other sources, along with a new dual permeability numerical model of the Chalk, have been used to explore the relative roles of matrix and fracture flow within the unsaturated zone and resolve conflicting hypotheses of response. From the improved understanding gained through these explorations, a parsimonious conceptualisation of the general response of flow and transport within the Chalk unsaturated zone was formulated. This paper summarises the modelling and data findings of these explorations, and describes the integration of the new simplified unsaturated zone representation with a catchment-scale model of nutrients (INCA), resulting in a new model for catchment-scale flow and transport within Chalk systems: INCA-Chalk. This model is applied to the Lambourn, and results, including hindcast and forecast simulations, are presented. These clearly illustrate the decadal time-scales that need to be considered in the context of nutrient management and the EU Water Framework Directive. (C) 2007 Elsevier B.V. All rights reserved.