35 resultados para Elementary shortest path with resource constraints
Resumo:
Computational formalisms have been pushing the boundaries of the field of computing for the last 80 years and much debate has surrounded what computing entails; what it is, and what it is not. This paper seeks to explore the boundaries of the ideas of computation and provide a framework for enabling a constructive discussion of computational ideas. First, a review of computing is given, ranging from Turing Machines to interactive computing. Then, a variety of natural physical systems are considered for their computational qualities. From this exploration, a framework is presented under which all dynamical systems can be considered as instances of the class of abstract computational platforms. An abstract computational platform is defined by both its intrinsic dynamics and how it allows computation that is meaningful to an external agent through the configuration of constraints upon those dynamics. It is asserted that a platform’s computational expressiveness is directly related to the freedom with which constraints can be placed. Finally, the requirements for a formal constraint description language are considered and it is proposed that Abstract State Machines may provide a reasonable basis for such a language.
Resumo:
In this article we review the evolution of economic theory on decision making under uncertainty. After a brief reference to Expected Utility Theory, we refer to behavioural paradoxes, forcing the theorists to adopt less restrictive approaches, allowing us to explain a broader spectrum of phenomena. The complexity entailed in the new theories requires a multidimensional description of human attitudes towards risk. Nevertheless, measurement of this attitudes has not followed the desired path, with most elicitation methods remaining uni-dimensional.
Resumo:
In this paper, we develop an energy-efficient resource-allocation scheme with proportional fairness for downlink multiuser orthogonal frequency-division multiplexing (OFDM) systems with distributed antennas. Our aim is to maximize energy efficiency (EE) under the constraints of the overall transmit power of each remote access unit (RAU), proportional fairness data rates, and bit error rates (BERs). Because of the nonconvex nature of the optimization problem, obtaining the optimal solution is extremely computationally complex. Therefore, we develop a low-complexity suboptimal algorithm, which separates subcarrier allocation and power allocation. For the low-complexity algorithm, we first allocate subcarriers by assuming equal power distribution. Then, by exploiting the properties of fractional programming, we transform the nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form, which includes a tractable solution. Next, an optimal energy-efficient power-allocation algorithm is developed to maximize EE while maintaining proportional fairness. Through computer simulation, we demonstrate the effectiveness of the proposed low-complexity algorithm and illustrate the fundamental trade off between energy and spectral-efficient transmission designs.
Resumo:
Background Pharmacy aseptic units prepare and supply injectables to minimise risks. The UK National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors, including near-misses, since 2003. Objectives The cumulative reports from January 2004 to December 2007, inclusive, were analysed. Methods The different variables of product types, error types, staff making and detecting errors, stage errors detected, perceived contributory factors, and potential or actual outcomes were presented by cross-tabulation of data. Results A total of 4691 reports were submitted against an estimated 958 532 items made, returning 0.49% as the overall error rate. Most of the errors were detected before reaching patients, with only 24 detected during or after administration. The highest number of reports related to adult cytotoxic preparations (40%) and the most frequently recorded error was a labelling error (34.2%). Errors were mostly detected at first check in assembly area (46.6%). Individual staff error contributed most (78.1%) to overall errors, while errors with paediatric parenteral nutrition appeared to be blamed on low staff levels more than other products were. The majority of errors (68.6%) had no potential patient outcomes attached, while it appeared that paediatric cytotoxic products and paediatric parenteral nutrition were associated with greater levels of perceived patient harm. Conclusions The majority of reports were related to near-misses, and this study highlights scope for examining current arrangements for checking and releasing products, certainly for paediatric cytotoxic and paediatric parenteral nutrition preparations within aseptic units, but in the context of resource and capacity constraints.
Resumo:
Farming systems research is a multi-disciplinary holistic approach to solve the problems of small farms. Small and marginal farmers are the core of the Indian rural economy Constituting 0.80 of the total farming community but possessing only 0.36 of the total operational land. The declining trend of per capita land availability poses a serious challenge to the sustainability and profitability of farming. Under such conditions, it is appropriate to integrate land-based enterprises such as dairy, fishery, poultry, duckery, apiary, field and horticultural cropping within the farm, with the objective of generating adequate income and employment for these small and marginal farmers Under a set of farm constraints and varying levels of resource availability and Opportunity. The integration of different farm enterprises can be achieved with the help of a linear programming model. For the current review, integrated farming systems models were developed, by Way Of illustration, for the marginal, small, medium and large farms of eastern India using linear programming. Risk analyses were carried out for different levels of income and enterprise combinations. The fishery enterprise was shown to be less risk-prone whereas the crop enterprise involved greater risk. In general, the degree of risk increased with the increasing level of income. With increase in farm income and risk level, the resource use efficiency increased. Medium and large farms proved to be more profitable than small and marginal farms with higher level of resource use efficiency and return per Indian rupee (Rs) invested. Among the different enterprises of integrated farming systems, a chain of interaction and resource flow was observed. In order to make fanning profitable and improve resource use efficiency at the farm level, the synergy among interacting components of farming systems should be exploited. In the process of technology generation, transfer and other developmental efforts at the farm level (contrary to the discipline and commodity-based approaches which have a tendency to be piecemeal and in isolation), it is desirable to place a whole-farm scenario before the farmers to enhance their farm income, thereby motivating them towards more efficient and sustainable fanning.
Resumo:
Recent studies of the current state of rural education and training (RET) systems in sub-Saharan Africa have assessed their ability to provide for the learning needs essential for more knowledgeable and productive small-scale rural households. These are most necessary if the endemic causes of rural poverty (poor nutrition, lack of sustainable livelihoods, etc.) are to be overcome. A brief historical background and analysis of the major current constraints to improvement in the sector are discussed. Paramount among those factors leading to its present 'malaise' is the lack of a whole-systems perspective and the absence of any coherent policy framework in most countries. There is evidence of some recent innovations, both in the public sector and through the work of non-governmental organisations (NGOs), civil society organisations (CSOs) and other private bodies. These provide hope of a new sense of direction that could lead towards meaningful 'revitalisation' of the sector. A suggested framework offers 10 key steps which, it is argued, could largely be achieved with modest internal resources and very little external support, provided that the necessary leadership and managerial capacities are in place. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Recently. Carter and Handy [J. Chem. Phys. 113 (2000) 987] have introduced the theory of the reaction path Hamiltonian (RPH) [J. Chem. Phys. 72 (1980) 99] into the variational scheme MULTIMODE, for the calculation of the J = 0 vibrational levels of polyatomic molecules, which have a single large-amplitude motion. In this theory the reaction path coordinate s becomes the fourth dimension of the moment-of-inertia tensor, and must be treated separately from the remaining 3N - 7 normal coordinates in the MULTIMODE program. In the modified program, complete integration is performed over s, and the M-mode MULTIMODE coupling approximation for the evaluation of the matrix elements applies only to the 3N - 7 normal coordinates. In this paper the new algorithm is extended to the calculation of rotational-vibration energy levels (i.e. J > 0) with the RPH, following from our analogous implementation for rigid molecules [Theoret. Chem. Acc. 100 (1998) 191]. The full theory is given, and all extra terms have been included to give the exact kinetic energy operator. In order to validate the new code, we report studies on hydrogen peroxide (H2O2), where the reaction path is equivalent to torsional motion. H2O2 has previously been studied variationally using a valence coordinate Hamiltonian; complete agreement for calculated rovibrational levels is obtained between the previous results and those from the new code, using the identical potential surface. MULTIMODE is now able to calculate rovibrational levels for polyatomic molecules which have one large-amplitude motion. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Navigating cluttered indoor environments is a difficult problem in indoor service robotics. The Acroboter concept, a novel approach to indoor locomotion, represents unique opportunity to avoid obstacles in indoor environments by navigating the ceiling plane. This mode of locomotion requires the ability to accurately detect obstacles, and plan 3D trajectories through the environment. This paper presents the development of a resilient object tracking system, as well as a novel approach to generating 3D paths suitable for such robot configurations. Distributed human-machine interfacing allowing simulation previewing of actions is also considered in the developed system architecture.
Resumo:
We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.
Resumo:
This paper introduces PSOPT, an open source optimal control solver written in C++. PSOPT uses pseudospectral and local discretizations, sparse nonlinear programming, automatic differentiation, and it incorporates automatic scaling and mesh refinement facilities. The software is able to solve complex optimal control problems including multiple phases, delayed differential equations, nonlinear path constraints, interior point constraints, integral constraints, and free initial and/or final times. The software does not require any non-free platform to run, not even the operating system, as it is able to run under Linux. Additionally, the software generates plots as well as LATEX code so that its results can easily be included in publications. An illustrative example is provided.
Resumo:
The problem of the appropriate distribution of forces among the fingers of a four-fingered robot hand is addressed. The finger-object interactions are modelled as point frictional contacts, hence the system is indeterminate and an optimal solution is required for controlling forces acting on an object. A fast and efficient method for computing the grasping and manipulation forces is presented, where computation has been based on using the true model of the nonlinear frictional cone of contact. Results are compared with previously employed methods of linearizing the cone constraints and minimizing the internal forces.
Resumo:
This paper proposes a novel interference cancellation algorithm for the two-path successive relay system using network coding. The two-path successive relay scheme was proposed recently to achieve full date rate transmission with half-duplex relays. Due to the simultaneous data transmission at the relay and source nodes, the two-path relay suffers from the so-called inter-relay interference (IRI) which may significantly degrade the system performance. In this paper, we propose to use the network coding to remove the IRI such that the interference is first encoded with the network coding at the relay nodes and later removed at the destination. The network coding has low complexity and can well suppress the IRI. Numerical simulations show that the proposed algorithm has better performance than existing approaches.