63 resultados para Electron trapping
Resumo:
Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The structure of 2,5-dihydropyrrole (C4NH7) has been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing third-order Moller-Plesset (MP3) level of theory and the 6-311+G(d,p) basis set. Several theoretical calculations were performed. From theoretical calculations using MP3/6-311+G(d,p) evidence was obtained for the presence of an axial (63%) (N-H bond axial to the CNC plane) and an equatorial conformer (37%) (N-H bond equatorial to the CNC plane). The five-membered ring was found to be puckered with the CNC plane inclined at 21.8 (38)° to the plane of the four carbon atoms.
Resumo:
The structures of trimethylchlorogermane ((CH3)(3)GeCl) and trimethylbromogermane ((CH3)(3)GeBr) have been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing second-order Moller-Plesset (MP2) level of theory and the 6-311+G(d) basis set. All the electrons were included in the correlation calculation. The results from the ab initio calculations indicated that these molecules have C-3v symmetry, and models with this symmetry were used in the electron diffraction analysis. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylchlorogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.950(4) Angstrom, r(Ge-Cl) = 2.173(4) Angstrom, r(C-H) = 1.090(9) Angstrom, angleCGeC = 112.7(7)degrees, angleCGeCl = 106.0(8)degrees, angleGeCH = 107.8(12)degrees. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylbromogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.952(7) Angstrom, r(Ge-Br) = 2.325(4) Angstrom, r(C-H) = 1. 140(28) Angstrom, angleCGeC = 114.2(11)degrees, angleCGeBr = 104.2(13)degrees, angleGeCH 106.9(43)degrees. Local C-3v symmetry and staggered conformation were assumed for the methyl groups.
Resumo:
The structures of benzoic acid (C6H5COOH) and 2-hydroxybenzoic acid (C6H4OHCOOH) have been determined in the gas phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d, p)) predict two conformers for benzoic acid, one which is 25.0 kJ mol(-1) (MP2) lower in energy than the other. In the low-energy form, the carboxyl group is coplanar with the phenyl ring and the O-H group eclipses the C=O bond. Theoretical calculations (HF and MP2/6-311+ G(d, p)) carried out for 2-hydroxybenzoic acid gave evidence for seven stable conformers but one low-energy form (11.7 kJ mol-1 lower in energy (MP2)) which again has the carboxyl group coplanar with the phenyl ring, the O-H of the carboxyl group eclipsing the C=O bond and the C=O of the carboxyl group oriented toward the O-H group of the phenyl ring. The effects of internal hydrogen bonding in 2-hydroxybenzoic acid can be clearly observed by comparison of pertinent structural parameters between the two compounds. These differences for 2-hydroxybenzoic acid include a shorter exocyclic C-C bond, a lengthening of the ring C-C bond between the substituents, and a shortening of the carboxylic single C-O bond.
Resumo:
The structures of 3-hydroxybenzoic acid and 4-hydroxybenzoic acid have been determined by gas-phase electron diffraction using results from quantum chemical calculations to inform the choice of restraints applied to some of the structural parameters. The results from the study presented here demonstrate that resonance hybrids are not as helpful in rationalizing the structures of 2-, 3-, and 4-hydroxybenzoic acids as are models based upon electrostatic effects.
Resumo:
Electron impact ionization of dinitrogen pentoxide for incident electron energies up to about 25 eV has been investigated by use of a crossed beams quadrupole mass spectrometer system. The experiments reported in this paper detected the fragmentation products NO2+, NO+, O+, N+, and NO3+. No stable N2O5+ ion was observed. The NO3+ fragment, for which we determine an appearance energy 13.25 +/- 0.30 ev, has not been observed previously. This appearance energy is close to the calculated threshold.
Resumo:
Electron attachment was studied in gaseous dinitrogen pentoxide, N2O5, for incident electron energies between a few meV and 10 eV. No stable parent anion N2O5- was observed but several anionic fragments (NO3-, NO2-, NO-, O-, and O-2(-)) were detected using quadrupole mass spectrometry. Many of these dissociative pathways were found to be coupled and provide detailed information on the dynamics of N2O5 fragmentation. Estimates of the cross sections for production of each of the anionic fragments were made and suggest that electron attachment to N2O5 is amongst the most efficient attachment reactions recorded for nonhalogenated polyatomic systems. (C) 2004 American Institute of Physics.
Resumo:
Cyclocondensations of aromatic diamines with 1,1'-bis(2,4-dinitrophenyl)-4,4'-bipyridinium salts afford doubly or quadruply charged, macrocyclic, N,N'-diarylbipyridinium cations. These are tolerant of a wide range of acids, bases, and nucleophiles, although they appear to undergo reversible, one-electron reduction by tertiary amines. Single-crystal X-ray analysis demonstrates the presence of a macrocycle conformation in which the 4,4'-bipyridinium and 4,4'-biphenylenedisulfonyl residues are suitably spaced and aligned for complexation with pi-donor arenes, and NMR studies in solution indeed confirm binding to 1,5-bis[hydroxy(ethoxy)ethoxy]naphthalene.
Resumo:
Using bis(3,5-dimethylpyrazol-1-yl) methane as the bidentate N donor ligand L, the yellow compound trans-[(RuL2)-L-III(OMe)(2)]ClO4 center dot CH2Cl2 is synthesized. It is a rare example of a mononuclear dialkoxo complex of Ru(III). It shows a quasireversible Ru(II/III) couple at -0.65 V versus NHE in acetonitrile at a Pt electrode. Its magnetic moment at room temperature corresponds to one unpaired electron. It displays a rhombic EPR spectrum in acetone at 77 K with g = 2.219, 2.062 and 1.855. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Selected silicas were modified with the covalently bound ligand 2,6-bis(benzoxazoyl)pyridine (BBOP), equilibrated with copper(II) nitrate, then challenged with toxic vapour containing HCN (8000 mg m(-3) at 80% relative humidity). The modified SBA-15 material (Cu-BBOP-SBA-15) had an improved breakthrough time for HCN (36 min at a flow rate of 30 cm(3) min(-1)) when compared to the other siliceous materials prepared in this study, equating to a hydrogen cyanide capacity of 58 mg g(-1), which is close to a reference activated carbon adsorbent (24 min at 50 cm(3) min(-1)) that can trap 64 mg g(-1). The enhanced performance observed with Cu-BBOP-SBA-15 has been related to the greater accessibility of the functional groups, arising from the ordered nature of the interconnected porous network and large mesopores of 5.5 nm within the material modified with the Cu(II)-BBOP complex. Modified MCM-41 and MCM-48 materials (Cu-BBOP-MCM-41 and Cu-BBOP-MCM-48) were found to have lower hydrogen cyanide capacities (38 and 32 mg g(-1) respectively) than the Cu-BBOP-SBA-15 material owing to the restricted size of the pores (2.2 and <2 nm respectively). The materials with poor nano-structured ordering were found to have low hydrogen cyanide capacities, between 11 and 19 mg g(-1), most likely owing to limited accessibility of the functional groups. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Free radicals from one-electron oxidation of the antimalarial drug pyronaridine have been studied by pulse radiolysis. The results show that pyronaridine is readily oxidised to an intermediate semi-iminoquine radical by inorganic and organic free radicals, including those derived from tryptophan and acetaminophen. The pyronaridine radical is rapidly reduced by both ascorbate and caffeic acid. The results indicate that the one-electron reduction potential of the pyronaridine radical at neutral pH lies between those of acetaminophen (707 mV) and caffeic acid (534 mV). The pyronaridine radical decays to produce the iminoquinone, detected by electrospray mass spectrometry, in a second-order process that density functional theory (DFT) calculations (UB3LYP/6-31+G*) suggest is a disproportionation reaction. Important calculated dimensions of pyronaridine, its phenoxyl and aminyl radical, as well as the iminoquinone, are presented.
Resumo:
Reaction of 2,2'-dithiodipyridine (DTDP) with cis-Ru(bpy)(2)Cl-2 (bpy = 2,2'-bipyridine) and cis-Ru(phen)(2)Cl-2 (phen = 1,10-phenanthroline) respectively yields the dicationic species [Ru(bpy) (2)(DTDP)](2+) and [Ru(phen)(2) (DTDP)](2+) in which the S-S bond of DTDP remains intact. The S-S bond undergoes a reductive cleavage when DTDP is reacted with cis-Ru(bisox)(2)Cl-2 (bisox = 4,4,4',4'-tetramethyl-2,2'-bisoxazoline) under identical conditions to generate the monocationic species [Ru(bisox)(2)(2-thiolatopyridine)]. The intramolecular electron transfer between the metal and the S-S bond is found to be subtly controlled by the crystal field strength of the ancillary bidentate N-donor ligands.
Resumo:
Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Two quantum-kinetic models of ultrafast electron transport in quantum wires are derived from the generalized electron-phonon Wigner equation. The various assumptions and approximations allowing one to find closed equations for the reduced electron Wigner function are discussed with an emphasis on their physical relevance. The models correspond to the Levinson and Barker-Ferry equations, now generalized to account for a space-dependent evolution. They are applied to study the quantum effects in the dynamics of an initial packet of highly nonequilibrium carriers, locally generated in the wire. The properties of the two model equations are compared and analyzed.