22 resultados para Electron Back-scatter Diffraction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-energy electron diffraction (LEED) pattern of the step-kinked Pt{531} surface at 200 K shows energy-dependent cancellation of diffraction spots over unusually large energy ranges, up to 100 eV. This cannot be reproduced theoretically when a flat surface geometry is assumed. A relatively simple model of roughening, however, involving 0.25 ML of vacancies and adatoms leads to very good agreement with the experiment. The cancellation of intensities within a very narrow range of adatom or vacancy coverages is caused by the interference of electrons emerging from different heights but similar local environments. This is a rare example where the energy dependence of integrated LEED spot intensities is dramatically affected by the long-range arrangement of atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel approach to calculating Low-Energy Electron Diffraction (LEED) intensities for ordered molecular adsorbates. First, the intra-molecular multiple scattering is computed to obtain a non-diagonal molecular T-matrix. This is then used to represent the entire molecule as a single scattering object in a conventional LEED calculation, where the Layer Doubling technique is applied to assemble the different layers, including the molecular ones. A detailed comparison with conventional layer-type LEED calculations is provided to ascertain the accuracy of this scheme of calculation. Advantages of this scheme for problems involving ordered arrays of molecules adsorbed on surfaces are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-term birth is the leading cause of perinatal and neonatal mortality, 40% of which are attributed to the pre-term premature rupture of amnion. Rupture of amnion is thought to be associated with a corresponding decrease in the extracellular collagen content and/or increase in collagenase activity. However, there is very little information concerning the detailed organisation of fibrillar collagen in amnion and how this might influence rupture. Here we identify a loss of lattice like arrangement in collagen organisation from areas near to the rupture site, and present a 9% increase in fibril spacing and a 50% decrease in fibrillar organisation using quantitative measurements gained by transmission electron microscopy and the novel application of synchrotron X-ray diffraction. These data provide an accurate insight into the biomechanical process of amnion rupture and highlight X-ray diffraction as a new and powerful tool in our understanding of this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new method to determine mesospheric electron densities from partially reflected medium frequency radar pulses. The technique uses an optimal estimation inverse method and retrieves both an electron density profile and a gradient electron density profile. As well as accounting for the absorption of the two magnetoionic modes formed by ionospheric birefringence of each radar pulse, the forward model of the retrieval parameterises possible Fresnel scatter of each mode by fine electronic structure, phase changes of each mode due to Faraday rotation and the dependence of the amplitudes of the backscattered modes upon pulse width. Validation results indicate that known profiles can be retrieved and that χ2 tests upon retrieval parameters satisfy validity criteria. Application to measurements shows that retrieved electron density profiles are consistent with accepted ideas about seasonal variability of electron densities and their dependence upon nitric oxide production and transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present observations of a poleward propagating substorm-disturbed region which was observed by the European Incoherent SCATter (EISCAT) radar and the Svalbard International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers in the postmidnight sector. The expansion of the disturbance was launched by a substorm intensification which started similar to 25 min after the initial onset, and similar to 10 min before the disturbance arrived over Svalbard. In association with the magnetic disturbance, a poleward expanding enduring enhancement in the F region electron temperature was observed, indicative of soft electron precipitation, with a narrow band of enhanced ion temperature straddling its poleward edge, indicative of fast ion flows and ion-neutral collisional heating. This electron temperature boundary was coincident with the poleward propagating electrojet current system detected by the high-latitude IMAGE magnetometer stations and is taken to be a proxy for the observation of a substorm auroral bulge. The electron temperature boundary is inferred to have a width comparable or less than one radar range gate (similar to 60 km transverse to the magnetic field), while the region of high ion temperature was found to be approximately three gates wide, extending approximately two gates (similar to 120 km) poleward of the electron temperature boundary, and approximately one gate (similar to 60 km) equatorward. The two-beam radar line-of-sight velocity data are found to be consistent with the existence of a layer of high-speed flow in the boundary, peaking at values similar to1.5-3 km s(-1), roughly consistent with the ion temperature data. The flow is directed either east or west along the boundary depending on the direction of the flow in the poleward region. We infer that the flow is deflected along and around the boundary of the substorm-disturbed region due to the high conductivity of the latter. Variations in the flow poleward of the boundary produced no discernible magnetic effects on the ground, confirming the low conductivity of the preboundary ionosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Tromso and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Alesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened held lines for the observed negative IMF B-y. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward B-z, and explain their morphology in the context of previous theoretical work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.