53 resultados para Electromagnetic wave propagation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atmospheric general circulation model experiments have been performed to investigate how the significant zonal asymmetry in the Southern Hemisphere (SH) winter storm track is forced by sea surface temperature (SST) and orography. An experiment with zonally symmetric tropical SSTs expands the SH upper-tropospheric storm track poleward and eastward and destroys its spiral structure. Diagnosis suggests that these aspects of the observed storm track result from Rossby wave propagation from a wave source in the Indian Ocean region associated with the monsoon there. The lower-tropospheric storm track is not sensitive to this forcing. However, an experiment with zonally symmetric midlatitude SSTs exhibits a marked reduction in the magnitude of the maximum intensity of the lower-tropospheric storm track associated with reduced SST gradients in the western Indian Ocean. Experiments without the elevation of the South African Plateau or the Andes show reductions in the intensity of the major storm track downstream of them due to reduced cyclogenesis associated with the topography. These results suggest that the zonal asymmetry of the SH winter storm track is mainly established by stationary waves excited by zonal asymmetry in tropical SST in the upper troposphere and by local SST gradients in the lower troposphere, and that it is modified through cyclogenesis associated with the topography of South Africa and South America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analytical dispersion relation is derived for linear perturbations to a Rankine vortex governed by surface quasi-geostrophic dynamics. Such a Rankine vortex is a circular region of uniform anomalous surface temperature evolving under quasi-geostrophic dynamics with uniform interior potential vorticity. The dispersion relation is analysed in detail and compared to the more familiar dispersion relation for a perturbed Rankine vortex governed by the Euler equations. The results are successfully verified against numerical simulations of the full equations. The dispersion relation is relevant to problems including wave propagation on surface temperature fronts and the stability of vortices in quasi-geostrophic turbulence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A connection between thunderstorms and the ionosphere has been hypothesized since the mid-1920s(1). Several mechanisms have been proposed to explain this connection(2-7), and evidence from modelling(8) as well as various types of measurements(9-14) demonstrate that lightning can interact with the lower ionosphere. It has been proposed, on the basis of a few observed events(15), that the ionospheric 'sporadic E' layer - transient, localized patches of relatively high electron density in the mid-ionosphere E layer, which significantly affect radio-wave propagation - can be modulated by thunderstorms, but a more formal statistical analysis is still needed. Here we identify a statistically significant intensification and descent in altitude of the mid-latitude sporadic E layer directly above thunderstorms. Because no ionospheric response to low-pressure systems without lightning is detected, we conclude that this localized intensification of the sporadic E layer can be attributed to lightning. We suggest that the co-location of lightning and ionospheric enhancement can be explained by either vertically propagating gravity waves that transfer energy from the site of lightning into the ionosphere, or vertical electrical discharge, or by a combination of these two mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the contemporaneous relationship between the intensity of the Indian Summer Monsoon (ISM) and runoff in the major rivers of the Aral Sea basin (Amudarya, Syrdarya) and some of their subcatchments. To this end, we use All-India rainfall (AIR) data, CRU surface observations of precipitation and temperature, ERA40 atmospheric data, and natural discharge data corrected for human interference. We show that there is a highly significant positive correlation between ISM intensity and Amudarya runoff. This finding cannot be explained by the spill-over of ISM precipitation over the Hindu Kush into the Amudarya basin. Instead, we suggest that the observed co-variability is mediated by tropospheric temperature variations due to fluctuations in the ISM intensity. These variations are known to be due to Rossby-wave propagation in response to condensational heating during monsoon precipitation. We hypothesise that the corresponding anomalies in surface temperatures imply anomalies in meltwater formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The technique of relaxation of the tropical atmosphere towards an analysis in a month-season forecast model has previously been successfully exploited in a number of contexts. Here it is shown that when tropical relaxation is used to investigate the possible origin of the observed anomalies in June–July 2007, a simple dynamical model is able to reproduce the observed component of the pattern of anomalies given by an ensemble of ECMWF forecast runs. Following this result, the simple model is used for a range of experiments on time-scales of relaxation, variables and regions relaxed based on a control model run with equatorial heating in a zonal flow. A theory based on scale analysis for the large-scale tropics is used to interpret the results. Typical relationships between scales are determined from the basic equations, and for a specified diabatic heating a chain of deductions for determining the dependent variables is derived. Different critical time-scales are found for tropical relaxation of different dependent variables to be effective. Vorticity has the longest critical time-scale, typically 1.2 days. For temperature and divergence, the time-scales are 10 hours and 3 hours, respectively. However not all the tropical fields, in particular the vertical motion, are reproduced correctly by the model unless divergence is heavily damped. To obtain the correct extra-tropical fields, it is crucial to have the correct rotational flow in the subtropics to initiate the Rossby wave propagation from there. It is sufficient to relax vorticity or temperature on a time-scale comparable or less than their critical time-scales to obtain this. However if the divergent advection of vorticity is important in the Rossby Wave Source then strong relaxation of divergence is required to accurately represent the tropical forcing of Rossby waves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to “squeeze out” valuable extra performance from coupled models through increases to oceanic resolution alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We extend the a priori error analysis of Trefftz-discontinuous Galerkin methods for time-harmonic wave propagation problems developed in previous papers to acoustic scattering problems and locally refined meshes. To this aim, we prove refined regularity and stability results with explicit dependence of the stability constant on the wave number for non convex domains with non connected boundaries. Moreover, we devise a new choice of numerical flux parameters for which we can prove L2-error estimates in the case of locally refined meshes near the scatterer. This is the setting needed to develop a complete hp-convergence analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years a number of chemistry-climate models have been developed with an emphasis on the stratosphere. Such models cover a wide range of time scales of integration and vary considerably in complexity. The results of specific diagnostics are here analysed to examine the differences amongst individual models and observations, to assess the consistency of model predictions, with a particular focus on polar ozone. For example, many models indicate a significant cold bias in high latitudes, the “cold pole problem”, particularly in the southern hemisphere during winter and spring. This is related to wave propagation from the troposphere which can be improved by improving model horizontal resolution and with the use of non-orographic gravity wave drag. As a result of the widely differing modelled polar temperatures, different amounts of polar stratospheric clouds are simulated which in turn result in varying ozone values in the models. The results are also compared to determine the possible future behaviour of ozone, with an emphasis on the polar regions and mid-latitudes. All models predict eventual ozone recovery, but give a range of results concerning its timing and extent. Differences in the simulation of gravity waves and planetary waves as well as model resolution are likely major sources of uncertainty for this issue. In the Antarctic, the ozone hole has probably reached almost its deepest although the vertical and horizontal extent of depletion may increase slightly further over the next few years. According to the model results, Antarctic ozone recovery could begin any year within the range 2001 to 2008. The limited number of models which have been integrated sufficiently far indicate that full recovery of ozone to 1980 levels may not occur in the Antarctic until about the year 2050. For the Arctic, most models indicate that small ozone losses may continue for a few more years and that recovery could begin any year within the range 2004 to 2019. The start of ozone recovery in the Arctic is therefore expected to appear later than in the Antarctic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A subtropical Rossby-wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific convergence zone (SPCZ) that is observed in a significant proportion of Madden–Julian oscillations (MJOs). Large-scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby-wave response with an upper-tropospheric anticyclone centred over, or slightly to the west of, the convection. Large potential-vorticity (PV) gradients, associated with the subtropical jet and the tropopause, lie just poleward of the anticyclone, and large magnitude PV air is advected equatorwards on the eastern side of the anticyclone. This ‘high’ PV air, or upper-tropospheric trough, is far enough off the equator that it has associated strong horizontal temperature gradients, and it induces deep ascent on its eastern side, at a latitude of about 15–30°. If this deep ascent is over a region susceptible to deep convection, such as the SPCZ, then convection may be forced or triggered. Hence convection develops along the SPCZ as a forced response to convection over Indonesia. The response mechanism is essentially one of subtropical Rossby-wave propagation. This hypothesis is based on a case study of a particularly strong MJO in early 1988, and is tested by idealized modelling studies. The mechanism may also be relevant to the existence of the mean SPCZ, as a forced response to mean Indonesian convection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since 2007 a large decline in Arctic sea ice has been observed. The large-scale atmospheric circulation response to this decline is investigated in ERA-Interim reanalyses and HadGEM3 climate model experiments. In winter, post-2007 observed circulation anomalies over the Arctic, North Atlantic and Eurasia are small compared to interannual variability. In summer, the post-2007 observed circulation is dominated by an anticyclonic anomaly over Greenland which has a large signal-to-noise ratio. Climate model experiments driven by observed SST and sea ice anomalies are able to capture the summertime pattern of observed circulation anomalies, although the magnitude is a third of that observed. The experiments suggest high SSTs and reduced sea ice in the Labrador Sea lead to positive temperature anomalies in the lower troposphere which weaken the westerlies over North America through thermal wind balance. The experiments also capture cyclonic anomalies over Northwest Europe, which are consistent with downstream Rossby wave propagation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The combined influences of the westerly phase of the quasi-biennial oscillation (QBO-W) and solar maximum (Smax) conditions on the Northern Hemisphere extratropical winter circulation are investigated using reanalysis data and Center for Climate System Research/National Institute for Environmental Studies chemistry climate model (CCM) simulations. The composite analysis for the reanalysis data indicates strengthened polar vortex in December followed by weakened polar vortex in February–March for QBO-W during Smax (QBO-W/Smax) conditions. This relationship need not be specific to QBO-W/Smax conditions but may just require strengthened vortex in December, which is more likely under QBO-W/Smax. Both the reanalysis data and CCM simulations suggest that dynamical processes of planetary wave propagation and meridional circulation related to QBO-W around polar vortex in December are similar in character to those related to Smax; furthermore, both processes may work in concert to maintain stronger vortex during QBO-W/Smax. In the reanalysis data, the strengthened polar vortex in December is associated with the development of north–south dipole tropospheric anomaly in the Atlantic sector similar to the North Atlantic oscillation (NAO) during December–January. The structure of the north–south dipole anomaly has zonal wavenumber 1 (WN1) component, where the longitude of anomalous ridge overlaps with that of climatological ridge in the North Atlantic in January. This implies amplification of the WN1 wave and results in the enhancement of the upward WN1 propagation from troposphere into stratosphere in January, leading to the weakened polar vortex in February–March. Although WN2 waves do not play a direct role in forcing the stratospheric vortex evolution, their tropospheric response to QBO-W/Smax conditions appears to be related to the maintenance of the NAO-like anomaly in the high-latitude troposphere in January. These results may provide a possible explanation for the mechanisms underlying the seasonal evolution of wintertime polar vortex anomalies during QBO-W/Smax conditions and the role of troposphere in this evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contrasting behaviour of westward-moving mixed Rossby-gravity (WMRG) and the first Rossby (R1) waves in El Niño (EN) and La Niña (LN) seasons is documented with a focus on the Northern Hemisphere winter. The eastward-moving variance in the upper troposphere is dominated by WMRG and R1 structures that appear to be Doppler-shifted by the flow and are referred to as WMRG-E and R1-E. In the East Pacific and Atlantic the years with stronger equatorial westerly winds have the stronger WMRG and WMRG- E. In the East Pacific, R1 is also a maximum in LN. However, R1-E exhibits an eastward-shift between LN and EN. The changes with ENSO phase provide a test-bed for the understanding of these waves. In the East Pacific and Atlantic, the stronger WMRG-E and WMRG with stronger westerlies are in accord with the dispersion relation with simple Doppler-shifting by the zonal flow. The possible existence of free waves can also explain stronger R1 in EN in the Eastern Hemisphere. 1-D free wave propagation theory based on wave activity conservation is also important for R1. However, this theory is unable to explain the amplitude maxima for other waves observed in the strong equatorial westerly regions in the Western Hemisphere, and certainly not their ENSO-related variation. The forcing of equatorial waves by higher latitude wave activity and its variation with ENSO phase is therefore examined. Propagation of extratropical eastward-moving Rossby wave activity through the westerly ducts into the equatorial region where it triggers WMRG-E is favoured in the stronger westerlies, in LN in the East Pacific and EN in the Atlantic. It is also found that WMRG is forced by Southern Hemisphere westward-moving wavetrains arching into the equatorial region where they are reflected. The most significant mechanism for both R1 and R1-E appear to be lateral forcing by subtropical wavetrains.