17 resultados para Elastic Properties.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human amniotic membrane (AM) is a tissue of fetal origin and has proven to be clinically useful as a biomaterial in the management of various ocular surface disorders including corneal stem cell transplantation. However, its success rate displays a degree of clinical unpredictability. We suggest that the measured variability inAMstiffness offers an explanation for the poor clinical reproducibility when it is used as a substrate for stem cell expansion and transplantation. Corneal epithelial stem cells were expanded upon AM samples possessing different mechanical stiffness. To investigate further the importance of biological substrate stiffness on cell phenotype we replaced AM with type I collagen gels of known stiffness. Substrate stiffness was measured using shear rheometry and surface topography was characterized using scanning electron microscopy and atomic force microscopy. The differentiation status of epithelial cells was examined using RT-PCR, immunohistochemistry and Western blotting. The level of corneal stem cell differentiation was increased in cells expanded upon AM with a high dynamic elastic shear modulus and cell expansion on type I collagen gels confirmed that the level of corneal epithelial stem cell differentiation was related to the substrate’s mechanical properties. In this paper we provide evidence to show that the preparatory method of AM for clinical use can affect its mechanical properties and that these measured differences can influence the level of differentiation within expanded corneal epithelial stem cells.