46 resultados para Eccentric Connectivity Polynomial
Resumo:
Lateral epicondylitis (LE) is hypothesized to occur as a result of repetitive, strenuous and abnormal postural activities of the elbow and wrist. There is still a lack of understanding of how wrist and forearm positions contribute to this condition during common manual tasks. In this study the wrist kinematics and the wrist extensors’ musculotendon patterns were investigated during a manual task believed to elicit LE symptoms in susceptible subjects. A 42-year-old right-handed male, with no history of LE, performed a repetitive movement involving pushing and turning a spring-loaded mechanism. Motion capture data were acquired for the upper limb and an inverse kinematic and dynamic analysis was subsequently carried out. Results illustrated the presence of eccentric contractions sustained by the extensor carpi radialis longus (ECRL), together with an almost constant level of tendon strain of both extensor carpi radialis brevis (ECRB) and extensor digitorum communis lateral (EDCL) branch. It is believed that these factors may partly contribute to the onset of LE as they are both responsible for the creation of microtears at the tendons’ origins. The methodology of this study can be used to explore muscle actions during movements that might cause or exacerbate LE.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
Classical measures of network connectivity are the number of disjoint paths between a pair of nodes and the size of a minimum cut. For standard graphs, these measures can be computed efficiently using network flow techniques. However, in the Internet on the level of autonomous systems (ASs), referred to as AS-level Internet, routing policies impose restrictions on the paths that traffic can take in the network. These restrictions can be captured by the valley-free path model, which assumes a special directed graph model in which edge types represent relationships between ASs. We consider the adaptation of the classical connectivity measures to the valley-free path model, where it is -hard to compute them. Our first main contribution consists of presenting algorithms for the computation of disjoint paths, and minimum cuts, in the valley-free path model. These algorithms are useful for ASs that want to evaluate different options for selecting upstream providers to improve the robustness of their connection to the Internet. Our second main contribution is an experimental evaluation of our algorithms on four types of directed graph models of the AS-level Internet produced by different inference algorithms. Most importantly, the evaluation shows that our algorithms are able to compute optimal solutions to instances of realistic size of the connectivity problems in the valley-free path model in reasonable time. Furthermore, our experimental results provide information about the characteristics of the directed graph models of the AS-level Internet produced by different inference algorithms. It turns out that (i) we can quantify the difference between the undirected AS-level topology and the directed graph models with respect to fundamental connectivity measures, and (ii) the different inference algorithms yield topologies that are similar with respect to connectivity and are different with respect to the types of paths that exist between pairs of ASs.
Resumo:
Cultures of cortical neurons grown on multielectrode arrays exhibit spontaneous, robust and recurrent patterns of highly synchronous activity called bursts. These bursts play a crucial role in the development and topological selforganization of neuronal networks. Thus, understanding the evolution of synchrony within these bursts could give insight into network growth and the functional processes involved in learning and memory. Functional connectivity networks can be constructed by observing patterns of synchrony that evolve during bursts. To capture this evolution, a modelling approach is adopted using a framework of emergent evolving complex networks and, through taking advantage of the multiple time scales of the system, aims to show the importance of sequential and ordered synchronization in network function.
Resumo:
Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.
Resumo:
Objective: Deficits in positive affect and their neural bases have been associated with major depression. However, whether reductions in positive affect result solely from an overall reduction in nucleus accumbens activity and fronto-striatal connectivity or the additional inability to sustain engagement of this network over time is unknown. The authors sought to determine whether treatment-induced changes in the ability to sustain nucleus accumbens activity and fronto-striatal connectivity during the regulation of positive affect are associated with gains in positive affect. Method: Using fMRI, the authors assessed the ability to sustain activity in reward-related networks when attempting to increase positive emotion during per- formance of an emotion regulation para- digm in 21 depressed patients before and after 2 months of antidepressant treat- ment. Over the same interval, 14 healthy comparison subjects underwent scanning as well. Results: After 2 months of treatment, self-reported positive affect increased. The patients who demonstrated the largest increases in sustained nucleus accumbens activity over the 2 months were those who demonstrated the largest increases in positive affect. In addition, the patients who demonstrated the largest increases in sustained fronto-striatal connectivity were also those who demonstrated the largest increases in positive affect when control- ling for negative affect. None of these associations were observed in healthy comparison subjects. Conclusions: Treatment-induced change in the sustained engagement of fronto- striatal circuitry tracks the experience of positive emotion in daily life. Studies examining reduced positive affect in a va- riety of psychiatric disorders might benefit from examining the temporal dynamics of brain activity when attempting to under- stand changes in daily positive affect.
Resumo:
Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI) of everyday actions using functional magnetic resonance imaging (fMRI). For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI), however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.
Resumo:
The Kagome lattice, comprising a two-dimensional array of corner-sharing equilateral triangles, is central to the exploration of magnetic frustration. In such a lattice, antiferromagnetic coupling between ions in triangular plaquettes prevents all of the exchange interactions being simultaneously satisfied and a variety of novel magnetic ground states may result at low temperature. Experimental realization of a Kagome lattice remains difficult. The jarosite family of materials of nominal composition AM3(SO4)2(OH)6 (A = monovalent cation; M= Fe3+, Cr3+), offers perhaps one of the most promising manifestations of the phenomenon of magnetic frustration in two dimensions. The magnetic properties of jarosites are however extremely sensitive to the degree of coverage of magnetic sites. Consequently, there is considerable interest in the use of soft chemical techniques for the design and synthesis of novel materials in which to explore the effects of spin, degree of site coverage and connectivity on magnetic frustration.
Resumo:
Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether patients with MDD show distributed changes in functional connectivity with a set of independently derived brain networks that have shown high correspondence with different task demands, including stimulus salience and emotional processing. We further explored if connectivity during emotional word processing related to the tendency to engage in positive or negative emotional states. In this study, 25 medication-free MDD patients without current or past comorbidity and matched controls (n=25) performed an emotional word-evaluation task during functional MRI. Using a dual regression approach, individual spatial connectivity maps representing each subject’s connectivity with each standard network were used to evaluate between-group differences and effects of positive and negative emotionality (extraversion and neuroticism, respectively, as measured with the NEO-FFI). Results showed decreased functional connectivity of the medial prefrontal cortex, ventrolateral prefrontal cortex, and ventral striatum with the fronto-opercular salience network in MDD patients compared to controls. In patients, abnormal connectivity was related to extraversion, but not neuroticism. These results confirm the hypothesis of a relative (para)limbic-cortical decoupling that may explain dysregulated affect in MDD. As connectivity of these regions with the salience network was related to extraversion, but not to general depression severity or negative emotionality, dysfunction of this network may be responsible for the failure to sustain engagement in rewarding behavior.
Resumo:
Recent evidence suggests that an area in the dorsal medial prefrontal cortex (dorsal nexus) shows dramatic increases in connectivity across a network of brain regions in depressed patients during the resting state;1 this increase in connectivity is suggested to represent hotwiring of areas involved in disparate cognitive and emotional functions.1, 2, 3 Sheline et al.1 concluded that antidepressant action may involve normalisation of the elevated resting state functional connectivity seen in depressed patients. However, the effects of conventional pharmacotherapy for depression on this resting state functional connectivity is not known and the effects of antidepressant treatment in depressed patients may be confounded by change in symptoms following treatment.
Resumo:
In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].
Resumo:
In this paper, we present a polynomial-based noise variance estimator for multiple-input multiple-output single-carrier block transmission (MIMO-SCBT) systems. It is shown that the optimal pilots for noise variance estimation satisfy the same condition as that for channel estimation. Theoretical analysis indicates that the proposed estimator is statistically more efficient than the conventional sum of squared residuals (SSR) based estimator. Furthermore, we obtain an efficient implementation of the estimator by exploiting its special structure. Numerical results confirm our theoretical analysis.
Resumo:
As people get older, they tend to remember more positive than negative information. This age-by-valence interaction has been called “positivity effect.” The current study addressed the hypotheses that baseline functional connectivity at rest is predictive of older adults' brain activity when learning emotional information and their positivity effect in memory. Using fMRI, we examined the relationship among resting-state functional connectivity, subsequent brain activity when learning emotional faces, and individual differences in the positivity effect (the relative tendency to remember faces expressing positive vs. negative emotions). Consistent with our hypothesis, older adults with a stronger positivity effect had increased functional coupling between amygdala and medial PFC (MPFC) during rest. In contrast, younger adults did not show the association between resting connectivity and memory positivity. A similar age-by-memory positivity interaction was also found when learning emotional faces. That is, memory positivity in older adults was associated with (a) enhanced MPFC activity when learning emotional faces and (b) increased negative functional coupling between amygdala and MPFC when learning negative faces. In contrast, memory positivity in younger adults was related to neither enhanced MPFC activity to emotional faces, nor MPFC–amygdala connectivity to negative faces. Furthermore, stronger MPFC–amygdala connectivity during rest was predictive of subsequent greater MPFC activity when learning emotional faces. Thus, emotion–memory interaction in older adults depends not only on the task-related brain activity but also on the baseline functional connectivity.
Resumo:
Despite its high toll on society, there has been little recent improvement in treatment efficacy for Major Depressive Disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting state functional connectivity predicted response to treatment with rapid transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased sgACC-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work.