21 resultados para East Central African Expedition (1878-1880)
Resumo:
While it was happening, European expansion was often legitimised by evoking frontier images: pioneers setting off from the metropolis, penetrating wilderness in order to open access to resources, like minerals, living-space, and fertile lands. Central to the ideology of the frontier is the notion of 'no-man's land'. These 'pioneers', however, often had to face local inhabitants and their interpretations and uses of this land. Thus it will be argued that contestations over landscape were at the same time battles over the legitimation of European expansion, as well as over local perceptions of this process. Ideologically, contestations by Europeans and Africans become apparent in the sexualisation of landscape. This paper is based on the case study of a Valley in eastern Zimbabwe on the border with Mozambique, and more specifically of two tea estates which were established in the rainforest. Unusually late for the region, European influence in this remote area only began to become significant in the 1950s which were an important turning point regarding land and landscape in the area. These years of great change will be analysed in order to map out different strands of interest by the main parties involved. It will be demonstrated that their readings of landscape translated into contestations over land. A recent example of such a conflict will be given.
Resumo:
BIOME 6000 is an international project to map vegetation globally at mid-Holocene (6000 14C yr bp) and last glacial maximum (LGM, 18,000 14C yr bp), with a view to evaluating coupled climate-biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site-based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present-day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south-western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial-interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now-arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land-surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere-biosphere models. The data could also be objectively generalized to yield realistic gridded land-surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation-climate feedbacks have focused on the hypothesized positive feedback effects of climate-induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid-Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.
Resumo:
The story presented in this paper began in the 1880s with the discovery of five unusual wet sites in the low-lying region of Holderness, East Yorkshire, during drainage works: West Furze, Round Hill, Barmston Drain, Gransmoor and Kelk (fig 1). The changing interpretation of the significance of these wet sites, from contemporary local accounts to their 'expert' publication early in the twentieth century (Smith 791I), contributed to the tale of the Holderness lake-dwellings, echoing the then already famous lake-dwellings of the Alpine region and elsewhere in Europe (Keller 1878). The tale of the Holderness lake-dwellings survived more recent work intact, as excavators approached the sites without challenging the preconception of these being genuine lake settlements (eg Varley 1968).
Resumo:
Changes in the water balance of Eurasia and northern Africa in response to insolation forcing at 6000 y BP simulated by five atmospheric general circulation models have been compared with observations of changes in lake status. All of the simulations show enhancement of the Asian summer monsoon and of the high pressure cells over the Pacific and Central Asia and the Middle East, causing wetter conditions in northern India and southern China and drier conditions along the Chinese coast and west of the monsoon core. All of the models show enhancement of the African monsoon, causing wetter conditions in the zone between ca 10–20 °N. Four of the models show conditions wetter than present in southern Europe and drier than present in northern Europe. Three of the models show conditions similar to present in the mid-latitude continental interior, while the remaining models show conditions somewhat drier than present. The extent and location of each of the simulated changes varies between the models, as does the mechanism producing these changes. The lake data confirm some features of the simulations, but indicate discrepancies between observed and simulated climates. For example, the data show: (1) conditions wetter than present in central Asia, from India to northern China and Mongolia, indicating that the simulated Asian monsoon expansion is too small; (2) conditions wetter than present between ca. 10–30 °N in Africa, indicating that the simulated African monsoon expansion is too small; (3) that northern Europe was drier, but the area of significantly drier conditions was more localized (around the Baltic) than shown in the simulations; (4) that southern Europe was wetter than present, apparently consistent with the simulations, but pollen data suggest that this reflects an increase in summer rainfall whereas the models show winter precipitation, and (5) that the mid-latitude continental interior was generally wetter than present.
Resumo:
Multiple observational data sets and atmosphere-only simulations from the Coupled Model Intercomparison Project Phase 5 are analyzed to characterize recent rainfall variability and trends over Africa focusing on 1983–2010. Data sets exhibiting spurious variability, linked in part to a reduction in rain gauge density, were identified. The remaining observations display coherent increases in annual Sahel rainfall (29 to 43 mm yr−1 per decade), decreases in March–May East African rainfall (−14 to −65 mm yr−1 per decade), and increases in annual Southern Africa rainfall (32 to 41 mm yr−1 per decade). However, Central Africa annual rainfall trends vary in sign (−10 to +39 mm yr−1 per decade). For Southern Africa, observed and sea surface temperature (SST)-forced model simulated rainfall variability are significantly correlated (r~0.5) and linked to SST patterns associated with recent strengthening of the Pacific Walker circulation.
Resumo:
East Asian summer monsoon (EASM) rainfall impacts the world's most populous regions. Accurate EASM rainfall prediction necessitates robust paleoclimate reconstructions from proxy data and quantitative linkage to modern climatic conditions. Many precisely dated oxygen isotope records from Chinese stalagmites have been interpreted as directly reflecting past EASM rainfall amount variability, but recent research suggests that such records instead integrate multiple hydroclimatic processes. Using a Lagrangian precipitation moisture source diagnostic, we demonstrate that EASM rainfall is primarily derived from the Indian Ocean. Conversely, Pacific Ocean moisture export peaks during winter, and the moisture uptake area does not differ significantly between summer and winter and is thus a minor contributor to monsoonal precipitation. Our results are substantiated by an accurate reproduction of summer and winter spatial rainfall distributions across China. We also correlate modern EASM rainfall oxygen isotope ratios with instrumental rainfall amount and our moisture source data. This analysis reveals that the strength of the source effect is geographically variable, and differences in atmospheric moisture transport may significantly impact the isotopic signature of EASM rainfall at the Hulu, Dongge, and Wanxiang Cave sites. These results improve our ability to isolate the rainfall amount signal in paleomonsoon reconstructions and indicate that precipitation across central and eastern China will directly respond to variability in Indian Ocean moisture supply.