17 resultados para ELECTROCHEMISTRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[ c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293–263 K only on the subsecond time scale of cyclic voltammetry. Although the EPR-active red-coloured pleiadiene radical cation is stable according to the literature in concentrated sulfuric acid, spectroelectrochemical measurements reported in this study provide convincing evidence for its facile conversion into the green-coloured, formally closed shell and, hence, EPRsilent π-bound dimer dication stable in THF at 253 K. The unexpected formation of the thermally unstable dimeric product featuring a characteristic intense low-energy absorption band at 673 nm (1.84 eV; logεmax=4.0) is substantiated by ab initio calculations on the parent pleiadiene molecule and the PF6 − salts of the corresponding radical cation and dimer dication. The latter is stabilized with respect to the radical cation by 14.40 kcal mol−1 (DFT B3LYP) [37.64 kcal mol−1 (CASPT2/DFT B3LYP)]. An excellent match has been obtained between the experimental and TDDFT- calculated UV–vis spectra of the PF6 − salt of the pleiadiene dimer dication, considering solvent (THF) effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes the synthesis and anion binding properties of a series of ‘picket fence’ metalloporphyrin complexes, within which the metal centre is systematically varied. The porphyrin structure contains four amide bonds and is the same for each metal. The anion binding properties of these receptors are further contrasted with those of their tetraphenylporphyrin congeners to elucidate both the effect of the metal centre and the influence of the amide groups on the anion recognition process. Anion binding was demonstrated using UV/visible and 1H NMR spectroscopies, electrochemistry and luminescence. The metal centre was found to be highly influential in the strength and selectivity of binding; for example, the cadmium and mercury complexes exhibited far greater affinities for anions than the zinc complexes in competitive solvents such as DMSO. The amide functionalities were found to enhance the anion binding process.