21 resultados para Drug-nutrient interactions.
Resumo:
Ibuprofen (IB), a BCS Class II compound, is a highly crystalline substance with poor solubility properties. Here we report on the disruption of this crystalline structure upon intimate contact with the polymeric carrier cross-linked polyvinylpyrrolidone (PVP-CL) facilitated by low energy simple mixing. Whilst strong molecular interactions between APIs and carriers within delivery systems would be expected on melting or through solvent depositions, this is not the case with less energetic mixing. Simple mixing of the two compounds resulted in a significant decrease in the differential scanning calorimetry (DSC) melting enthalpy for IB, indicating that approximately 30% of the crystalline content was disordered. This structural change was confirmed by broadening and intensity diminution of characteristic IB X-ray powder diffractometry (PXRD) peaks. Unexpectedly, the crystalline content of the drug continued to decrease upon storage under ambient conditions. The molecular environment of the mixture was further investigated using Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectroscopy. These data suggest that the primary interaction between these components of the physical mix is hydrogen bonding, with a secondary mechanism involving electrostatic/hydrophobic interactions through the IB benzene ring. Such interactions and subsequent loss of crystallinity could confer a dissolution rate advantage for IB. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The early eighties saw the introduction of liposomes as skin drug delivery systems, initially promoted primarily for localised effects with minimal systemic delivery. Subsequently, a novel ultradeformable vesicular system (termed "Transfersomes" by the inventors) was reported for transdermal delivery with an efficiency similar to subcutaneous injection. Further research illustrated that the mechanisms of liposome action depended on the application regime and the vesicle composition and morphology. Ethical, health and supply problems with human skin have encouraged researchers to use skin models. 'IYaditional models involved polymer membranes and animal tissue, but whilst of value for release studies, such models are not always good mimics for the complex human skin barrier, particularly with respect to the stratum corneal intercellular lipid domains. These lipids have a multiply bilayered organization, a composition and organization somewhat similar to liposomes, Consequently researchers have used vesicles as skin model membranes. Early work first employed phospholipid liposomes and tested their interactions with skin penetration enhancers, typically using thermal analysis and spectroscopic analyses. Another approach probed how incorporation of compounds into liposomes led to the loss of entrapped markers, analogous to "fluidization" of stratum corneum lipids on treatment with a penetration enhancer. Subsequently scientists employed liposomes formulated with skin lipids in these types of studies. Following a brief description of the nature of the skin barrier to transdermal drug delivery and the use of liposomes in drug delivery through skin, this article critically reviews the relevance of using different types of vesicles as a model for human skin in permeation enhancement studies, concentrating primarily on liposomes after briefly surveying older models. The validity of different types of liposome is considered and traditional skin models are compared to vesicular model membranes for their precision and accuracy as skin membrane mimics. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The complex metabolic relationships between the host and its microbiota change throughout life and vary extensively between individuals, affecting disease risk factors and therapeutic responses through drug metabolism. Elucidating the biochemical mechanisms underlying this human supraorganism symbiosis is yielding new therapeutic insights to improve human health, treat disease, and potentially modify human disease risk factors. Therapeutic options include targeting drugs to microbial genes or co-regulated host pathways and modifying the gut microbiota through diet, probiotic and prebiotic interventions, bariatric surgery, fecal transplants, or ecological engineering. The age-associated co-development of the host and its microbiota provides a series of windows for therapeutic intervention from early life through old age
Resumo:
BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.
Resumo:
Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(Nvinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.
Resumo:
In this work, we introduce dipeptides containing tryptophan N-capped with the nonsteroidal anti-inflammatory drug naproxen and C-terminal dehydroamino acids, dehydrophenylalanine (ΔPhe), dehydroaminobutyric acid (ΔAbu), and dehydroalanine (ΔAla) as efficacious protease resistant hydrogelators. Optimized conditions for gel formation are reported. Transmission electron microscopy experiments revealed that the hydrogels consist of networks of micro/nanosized fibers formed by peptide self-assembly. Fluorescence and circular dichroism spectroscopy indicate that the self-assembly process is driven by stacking interactions of the aromatic groups. The naphthalene groups of the naproxen moieties are highly organized in the fibers through chiral stacking. Rheological experiments demonstrated that the most hydrophobic peptide (containing C-terminal ΔPhe) formed more elastic gels at lower critical gelation concentrations. This gel revealed irreversible breakup, while the C-terminal ΔAbu and ΔAla gels, although less elastic, exhibited structural recovery and partial healing of the elastic properties. A potential antitumor thieno[3,2-b]pyridine derivative was incorporated (noncovalently) into the gel formed by the hydrogelator containing C-terminal ΔPhe residue. Fluorescence and Förster resonance energy transfer measurements indicate that the drug is located in a hydrophobic environment, near/associated with the peptide fibers, establishing this type of hydrogel as a good drug-nanocarrier candidate.