55 resultados para Distal humeral joint
Resumo:
This paper describes a proposed admittance enhanced redundant joint mechanism (AERJM) which allows greater flexibility in the design of robotic joints. First, the basic concept of a redundant joint mechanism that reduces joint inertia is explained. Second, the AERJM structure is discussed. AERJM consists of a redundancy introducing mechanism (RIM), the adjustable admittance mechanism (AAM) and an admittance enhancing actuator. The working principles of the AERJM concept are analysed. The design and a working prototype, consisting of a variable reduction mechanism, along with a spring and a damper with constant coefficients, are described.
OFDM joint data detection and phase noise cancellation based on minimum mean square prediction error
Resumo:
This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This correspondence proposes a new algorithm for the OFDM joint data detection and phase noise (PHN) cancellation for constant modulus modulations. We highlight that it is important to address the overfitting problem since this is a major detrimental factor impairing the joint detection process. In order to attack the overfitting problem we propose an iterative approach based on minimum mean square prediction error (MMSPE) subject to the constraint that the estimated data symbols have constant power. The proposed constrained MMSPE algorithm (C-MMSPE) significantly improves the performance of existing approaches with little extra complexity being imposed. Simulation results are also given to verify the proposed algorithm.
Resumo:
The spectral content of the myoelectric signals from the muscles of the remnant forearms of three persons with congenital absences (CA) of their forearms was compared with signals from their intact contra-lateral limbs, similar muscles in three persons with acquired losses (AL) and seven persons without absences [no loss (NL)]. The observed bandwidth for the CA subjects was broader with peak energy between 200 and 300 Hz. While the signals from the contra-lateral limbs and the AL and NL subjects was in the 100-150 Hz range: The mean skew of the signals from the AL subjects was 46.3 +/- 6.7 and those with NL of 45.4 +/- 8.7, while the signals from those with CAs had a skew of 11.0 +/- 11. The structure of the muscles of one CA subject was observed ultrasonically. The muscle showed greater disruption than normally developed muscles. It is speculated that the myographic signal reflects the structure of the muscle. which has developed in a more disorganized manner as a result of the muscle not being stretched by other muscles across the missing distal joint, even in the muscles that are used regularly to control arm prostheses.
Resumo:
Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.