58 resultados para Dispersion compensation
Resumo:
Perceptual compensation for reverberation was measured by embedding test words in contexts that were either spoken phrases or processed versions of this speech. The processing gave steady-spectrum contexts with no changes in the shape of the short-term spectral envelope over time, but with fluctuations in the temporal envelope. Test words were from a continuum between "sir" and "stir." When the amount of reverberation in test words was increased, to a level above the amount in the context, they sounded more like "sir." However, when the amount of reverberation in the context was also increased, to the level present in the test word, there was perceptual compensation in some conditions so that test words sounded more like "stir" again. Experiments here found compensation with speech contexts and with some steady-spectrum contexts, indicating that fluctuations in the context's temporal envelope can be sufficient for compensation. Other results suggest that the effectiveness of speech contexts is partly due to the narrow-band "frequency-channels" of the auditory periphery, where temporal-envelope fluctuations can be more pronounced than they are in the sound's broadband temporal envelope. Further results indicate that for compensation to influence speech, the context needs to be in a broad range of frequency channels. (c) 2007 Acoustical Society of America.
Resumo:
Perceptual effects of room reverberation on a "sir" or "stir" test-word can be observed when the level of reverberation in the word is increased, while the reverberation in a surrounding 'context I utterance remains at a minimal level. The result is that listeners make more "sit" identifications. When the context's reverberation is also increased, to approach the level in the test word, extrinsic perceptual compensation is observed, so that the number of listeners' "sir" identifications reduces to a value similar to that found with minimal reverberation. Thus far, compensation effects have only been observed with speech or speech-like contexts in which the short-term spectrum changes as the speaker's articulators move. The results reported here show that some noise contexts with static short-term spectra can also give rise to compensation. From these experiments it would appear that compensation requires a context with a temporal envelope that fluctuates to some extent, so that parts of it resemble offsets. These findings are consistent with a rather general kind of perceptual compensation mechanism; one that is informed by the 'tails' that reverberation adds at offsets. Other results reported here show that narrow-band contexts do not bring about compensation, even when their temporal-envelopes are the same as those of the more effective wideband contexts. These results suggest that compensation is confined to the frequency range occupied by the context, and that in a wideband sound it might operate in a 'band by band' manner.
Resumo:
Listeners were asked to identify modified recordings of the words "sir" and "stir," which were spoken by an adult male British-English speaker. Steps along a continuum between the words were obtained by a pointwise interpolation of their temporal-envelopes. These test words were embedded in a longer "context" utterance, and played with different amounts of reverberation. Increasing only the test-word's reverberation shifts the listener's category boundary so that more "sir"-identifications are made. This effect reduces when the context's reverberation is also increased, indicating perceptual compensation that is informed by the context. Experiment I finds that compensation is more prominent in rapid speech, that it varies between rooms, that it is more prominent when the test-word's reverberation is high, and that it increases with the context's reverberation. Further experiments show that compensation persists when the room is switched between the context and the test word, when presentation is monaural, and when the context is reversed. However, compensation reduces when the context's reverberation pattern is reversed, as well as when noise-versions of the context are used. "Tails" that reverberation introduces at the ends of sounds and at spectral transitions may inform the compensation mechanism about the amount of reflected sound in the signal. (c) 2005 Acoustical Society of America.
Resumo:
In an ideal "reverberant" room, the energy of the impulse responses decays smoothly, at a constant rate of dB/s, so that gradually-decaying tails are added at the ends of sounds. Conversely, a single echo gives a flat energy-decay up to the echo's arrival time, which then drops abruptly, so that sounds with only echoes lack the decaying-tail feature of reverberation. The perceptual effects of these types of reflection pattern were measured with test-words from a continuum of steps between "sir" and "stir", which were each embedded in a carrier phrase. When the proportion of reflected sound in test-words is increased, to a level above the amount in the carrier, the test words sound more like "sir". However, when the proportion of reflected sound in the carrier is also increased, to match the amount in the test word, there can be a perceptual compensation where test words sound more like "stir" again. A reference condition used real-room reverberation from recordings at different source to receiver distances. In a synthetic-reverberation condition, the reflection pattern was from a "colorless" impulse response, comprising exponentially-decaying reflections that were spaced at intervals. In a synthetic-echo condition, the reflection pattern was obtained from the synthetic reverberation by removing the intervals between reflections before delaying the resulting cluster relative to the direct sound. Compensation occurred in the reference condition and in different types of synthetic reverberation, but not in synthetic-echo conditions. This result indicates that the presence of tails from reverberation informs the compensation mechanism.
Resumo:
The DAPPLE (Dispersion of Air Pollutants and their Penetration into the Local Environment) project seeks to characterise near-field urban atmospheric dispersion using a multidisciplinary approach. In this paper we report on the first tracer dispersion experiment carried out in May 2003. Results of concurrent meteorological measurements are presented. Variations of receptor tracer concentration with time are presented. Meteorological observations suggest that in-street channelling and flow-switching at intersections take place. A comparison between roof top and surface measurements suggest that rapid vertical mixing occurs, and a comparison between a simple dispersion model and maximum concentrations observed are presented
Resumo:
As part of the DAPPLE programme two large scale urban tracer experiments using multiple simultaneous releases of cyclic perfluoroalkanes from fixed location point sources was performed. The receptor concentrations along with relevant meteorological parameters measured are compared with a three screening dispersion models in order to best predict the decay of pollution sources with respect to distance. It is shown here that the simple dispersion models tested here can provide a reasonable upper bound estimate of the maximum concentrations measured with an empirical model derived from field observations and wind tunnel studies providing the best estimate. An indoor receptor was also used to assess indoor concentrations and their pertinence to commonly used evacuation procedures.
Resumo:
During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instru- ments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14e23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly- averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.
Resumo:
Colloidal gas aphrons (CGA) have previously been defined as surfactant stabilized gas microbubbles and characterized for a number of surfactants in terms of stability, gas holdup and bubble size even though there is no conclusive evidence of their structure (that is, orientation of surfactant molecules at the gas–liquid interface, thickness of gas–liquid interface, and/or number of surfactant layers). Knowledge of the structure would enable us to use these dispersions more efficiently for their diverse applications (such as for removal of dyes, recovery of proteins, and enhancement of mass transfer in bioreactors). This study investigates dispersion and structural features of CGA utilizing a range of novel predictive (for prediction of aphron size and drainage rate) and experimental (electron microscopy and X-ray diffraction) methods. Results indicate structural differences between foams and CGA, which may have been caused by a multilayer structure of the latter as suggested by the electron and X-ray diffraction analysis.
Resumo:
The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Reτ = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0◦ , 30◦ , 45◦). The results agree well with available experimental data measured in a water channel for a flow angle of 0◦ . Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays. Keywords Direct numerical simulation · Dispersion modelling · Urban array