106 resultados para Discrete Gaussian Sampling


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated diurnal nitrate (NO3-) concentration variability in the San Joaquin River using an in situ optical NO3- sensor and discrete sampling during a 5-day summer period characterized by high algal productivity. Dual NO3- isotopes (delta N-15(NO3) and delta O-18(NO3)) and dissolved oxygen isotopes (delta O-18(DO)) were measured over 2 days to assess NO3- sources and biogeochemical controls over diurnal time-scales. Concerted temporal patterns of dissolved oxygen (DO) concentrations and delta O-18(DO) were consistent with photosynthesis, respiration and atmospheric O-2 exchange, providing evidence of diurnal biological processes independent of river discharge. Surface water NO3- concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5-day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of delta N-15(NO3) and delta O-18(NO3) isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3- variability in the San Joaquin River during the study. The lack of a clear explanation for NO3- variability likely reflects a combination of riverine biological processes and time-varying physical transport of NO3- from upstream agricultural drains to the mainstem San Joaquin River. The application of an in situ optical NO3- sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] Cloud cover is conventionally estimated from satellite images as the observed fraction of cloudy pixels. Active instruments such as radar and Lidar observe in narrow transects that sample only a small percentage of the area over which the cloud fraction is estimated. As a consequence, the fraction estimate has an associated sampling uncertainty, which usually remains unspecified. This paper extends a Bayesian method of cloud fraction estimation, which also provides an analytical estimate of the sampling error. This method is applied to test the sensitivity of this error to sampling characteristics, such as the number of observed transects and the variability of the underlying cloud field. The dependence of the uncertainty on these characteristics is investigated using synthetic data simulated to have properties closely resembling observations of the spaceborne Lidar NASA-LITE mission. Results suggest that the variance of the cloud fraction is greatest for medium cloud cover and least when conditions are mostly cloudy or clear. However, there is a bias in the estimation, which is greatest around 25% and 75% cloud cover. The sampling uncertainty is also affected by the mean lengths of clouds and of clear intervals; shorter lengths decrease uncertainty, primarily because there are more cloud observations in a transect of a given length. Uncertainty also falls with increasing number of transects. Therefore a sampling strategy aimed at minimizing the uncertainty in transect derived cloud fraction will have to take into account both the cloud and clear sky length distributions as well as the cloud fraction of the observed field. These conclusions have implications for the design of future satellite missions. This paper describes the first integrated methodology for the analytical assessment of sampling uncertainty in cloud fraction observations from forthcoming spaceborne radar and Lidar missions such as NASA's Calipso and CloudSat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the review is to provide a state-of-the-art survey on sampling and probe methods for the solution of inverse problems. Further, a configuration approach to some of the problems will be presented. We study the concepts and analytical results for several recent sampling and probe methods. We will give an introduction to the basic idea behind each method using a simple model problem and then provide some general formulation in terms of particular configurations to study the range of the arguments which are used to set up the method. This provides a novel way to present the algorithms and the analytic arguments for their investigation in a variety of different settings. In detail we investigate the probe method (Ikehata), linear sampling method (Colton-Kirsch) and the factorization method (Kirsch), singular sources Method (Potthast), no response test (Luke-Potthast), range test (Kusiak, Potthast and Sylvester) and the enclosure method (Ikehata) for the solution of inverse acoustic and electromagnetic scattering problems. The main ideas, approaches and convergence results of the methods are presented. For each method, we provide a historical survey about applications to different situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ferroelectric liquid crystal spatial light modulator is used to generate up to 24 independently controllable traps in a holographic optical tweezers system using time-multiplexed Fresnel zone plates. For use in biological applications, helical zone plates are used to generate Laguerre-Gaussian laser modes. The high speed switching of the ferroelectric device together with recent advances in computer technology enable fast, smooth movement of traps that can be independently controlled in real time. This is demonstrated by the trapping and manipulation of yeast cells and fungal spores. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of particle filters in geophysical systems is reviewed. Some background on Bayesian filtering is provided, and the existing methods are discussed. The emphasis is on the methodology, and not so much on the applications themselves. It is shown that direct application of the basic particle filter (i.e., importance sampling using the prior as the importance density) does not work in high-dimensional systems, but several variants are shown to have potential. Approximations to the full problem that try to keep some aspects of the particle filter beyond the Gaussian approximation are also presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil fauna is often a neglected group in many large-scale studies of farmland biodiversity due to difficulties in extracting organisms efficiently from the soil. This study assesses the relative efficiency of the simple and cheap sampling method of handsorting against Berlese-Tullgren funnel and Winkler apparatus extraction. Soil cores were taken from grassy arable field margins and wheat fields in Cambridgeshire, UK, and the efficiencies of the three methods in assessing the abundances and species densities of soil macroinver-tebrates were compared. Handsorting in most cases was as efficient at extracting the majority of the soil macrofauna as the Berlese-Tullgren funnel and Winkler bag methods, although it underestimated the species densities of the woodlice and adult beetles. There were no obvious biases among the three methods for the particular vegetation types sampled and no significant differences in the size distributions of the earthworms and beetles. Proportionally fewer damaged earthworms were recorded in larger (25 x 25 cm) soil cores when compared with smaller ones (15 x 15 cm). Handsorting has many benefits, including targeted extraction, minimum disturbance to the habitat and shorter sampling periods and may be the most appropriate method for studies of farmland biodiversity when a high number of soil cores need to be sampled. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs.We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.