40 resultados para Directional couplers
Resumo:
This paper specifically examines the implantation of a microelectrode array into the median nerve of the left arm of a healthy male volunteer. The objective was to establish a bi-directional link between the human nervous system and a computer, via a unique interface module. This is the first time that such a device has been used with a healthy human. The aim of the study was to assess the efficacy, compatibility, and long term operability of the neural implant in allowing the subject to perceive feedback stimulation and for neural activity to be detected and processed such that the subject could interact with remote technologies. A case study demonstrating real-time control of an instrumented prosthetic hand by means of the bi-directional link is given. The implantation did not result in infection, and scanning electron microscope images of the implant post extraction have not indicated significant rejection of the implant by the body. No perceivable loss of hand sensation or motion control was experienced by the subject while the implant was in place, and further testing of the subject following the removal of the implant has not indicated any measurable long term defects. The implant was extracted after 96 days. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
Two algorithms for finding the point on non-rational/rational Bezier curves of which the normal vector passes through a given external point are presented. The algorithms are based on Bezier curves generation algorithms of de Casteljau's algorithm for non-rational Bezier curve or Farin's recursion for rational Bezier curve, respectively. Orthogonal projections from the external point are used to guide the directional search used in the proposed iterative algorithms. Using Lyapunov's method, it is shown that each algorithm is able to converge to a local minimum for each case of non-rational/rational Bezier curves. It is also shown that on convergence the distance between the point on curves to the external point reaches a local minimum for both approaches. Illustrative examples are included to demonstrate the effectiveness of the proposed approaches.
Resumo:
In a semi-naturalistic response-effect compatibility paradigm, participants were given the opportunity to learn that hand-shaking actions would be followed by social effects (human hand-shaking stimuli from a third-person perspective) or inanimate effects (block arrow stimuli). Relative to the actions, these effects appeared on the same or the opposite side of the screen (positional compatibility), and pointed towards or away from the response hand (directional compatibility). After learning, response times indicated a positional compatibility effect for both social and inanimate effects, but a directional compatibility effect occurred only for social action effects. These findings indicate that actions can be represented, not only by their effects on the inanimate world, but also by their effects on the actions of others. They are consistent with ideomotor theory, and with the view that actions are represented by bidirectional response-effect associations. They also have implications with respect to the origins and on-line control of imitation and the systems supporting imitation.
Resumo:
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.
Resumo:
This paper examines the significance of widely used leading indicators of the UK economy for predicting the cyclical pattern of commercial real estate performance. The analysis uses monthly capital value data for UK industrials, offices and retail from the Investment Property Databank (IPD). Prospective economic indicators are drawn from three sources namely, the series used by the US Conference Board to construct their UK leading indicator and the series deployed by two private organisations, Lombard Street Research and NTC Research, to predict UK economic activity. We first identify turning points in the capital value series adopting techniques employed in the classical business cycle literature. We then estimate probit models using the leading economic indicators as independent variables and forecast the probability of different phases of capital values, that is, periods of declining and rising capital values. The forecast performance of the models is tested and found to be satisfactory. The predictability of lasting directional changes in property performance represents a useful tool for real estate investment decision-making.
Resumo:
We investigated whether attention shifts and eye movement preparation are mediated by shared control mechanisms, as claimed by the premotor theory of attention. ERPs were recorded in three tasks where directional cues presented at the beginning of each trial instructed participants to direct their attention to the cued side without eye movements (Covert task), to prepare an eye movement in the cued direction without attention shifts (Saccade task) or both (Combined task). A peripheral visual Go/Nogo stimulus that was presented 800 ms after cue onset signalled whether responses had to be executed or withheld. Lateralised ERP components triggered during the cue–target interval, which are assumed to reflect preparatory control mechanisms that mediate attentional orienting, were very similar across tasks. They were also present in the Saccade task, which was designed to discourage any concomitant covert attention shifts. These results support the hypothesis that saccade preparation and attentional orienting are implemented by common control structures. There were however systematic differences in the impact of eye movement programming and covert attention on ERPs triggered in response to visual stimuli at cued versus uncued locations. It is concluded that, although the preparatory processes underlying saccade programming and covert attentional orienting may be based on common mechanisms, they nevertheless differ in their spatially specific effects on visual information processing.
Resumo:
Motivation: In order to enhance genome annotation, the fully automatic fold recognition method GenTHREADER has been improved and benchmarked. The previous version of GenTHREADER consisted of a simple neural network which was trained to combine sequence alignment score, length information and energy potentials derived from threading into a single score representing the relationship between two proteins, as designated by CATH. The improved version incorporates PSI-BLAST searches, which have been jumpstarted with structural alignment profiles from FSSP, and now also makes use of PSIPRED predicted secondary structure and bi-directional scoring in order to calculate the final alignment score. Pairwise potentials and solvation potentials are calculated from the given sequence alignment which are then used as inputs to a multi-layer, feed-forward neural network, along with the alignment score, alignment length and sequence length. The neural network has also been expanded to accommodate the secondary structure element alignment (SSEA) score as an extra input and it is now trained to learn the FSSP Z-score as a measurement of similarity between two proteins. Results: The improvements made to GenTHREADER increase the number of remote homologues that can be detected with a low error rate, implying higher reliability of score, whilst also increasing the quality of the models produced. We find that up to five times as many true positives can be detected with low error rate per query. Total MaxSub score is doubled at low false positive rates using the improved method.
Resumo:
BACKGROUND: We examined the role of aerosol transmission of influenza in an acute ward setting. METHODS: We investigated a seasonal influenza A outbreak that occurred in our general medical ward (with open bay ward layout) in 2008. Clinical and epidemiological information was collected in real time during the outbreak. Spatiotemporal analysis was performed to estimate the infection risk among patients. Airflow measurements were conducted, and concentrations of hypothetical virus-laden aerosols at different ward locations were estimated using computational fluid dynamics modeling. RESULTS: Nine inpatients were infected with an identical strain of influenza A/H3N2 virus. With reference to the index patient's location, the attack rate was 20.0% and 22.2% in the "same" and "adjacent" bays, respectively, but 0% in the "distant" bay (P = .04). Temporally, the risk of being infected was highest on the day when noninvasive ventilation was used in the index patient; multivariate logistic regression revealed an odds ratio of 14.9 (95% confidence interval, 1.7-131.3; P = .015). A simultaneous, directional indoor airflow blown from the "same" bay toward the "adjacent" bay was found; it was inadvertently created by an unopposed air jet from a separate air purifier placed next to the index patient's bed. Computational fluid dynamics modeling revealed that the dispersal pattern of aerosols originated from the index patient coincided with the bed locations of affected patients. CONCLUSIONS: Our findings suggest a possible role of aerosol transmission of influenza in an acute ward setting. Source and engineering controls, such as avoiding aerosol generation and improving ventilation design, may warrant consideration to prevent nosocomial outbreaks.
Resumo:
The direct impact of mountain waves on the atmospheric circulation is due to the deposition of wave momentum at critical levels, or levels where the waves break. The first process is treated analytically in this study within the framework of linear theory. The variation of the momentum flux with height is investigated for relatively large shears, extending the authors’ previous calculations of the surface gravity wave drag to the whole atmosphere. A Wentzel–Kramers–Brillouin (WKB) approximation is used to treat inviscid, steady, nonrotating, hydrostatic flow with directional shear over a circular mesoscale mountain, for generic wind profiles. This approximation must be extended to third order to obtain momentum flux expressions that are accurate to second order. Since the momentum flux only varies because of wave filtering by critical levels, the application of contour integration techniques enables it to be expressed in terms of simple 1D integrals. On the other hand, the momentum flux divergence (which corresponds to the force on the atmosphere that must be represented in gravity wave drag parameterizations) is given in closed analytical form. The momentum flux expressions are tested for idealized wind profiles, where they become a function of the Richardson number (Ri). These expressions tend, for high Ri, to results by previous authors, where wind profile effects on the surface drag were neglected and critical levels acted as perfect absorbers. The linear results are compared with linear and nonlinear numerical simulations, showing a considerable improvement upon corresponding results derived for higher Ri.
Resumo:
Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with constant unidirectional or directional shear up to a certain height and zero shear above, with and without critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear extending indefinitely assumed in many analytical studies, leads to important modifications in the drag behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid, nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large, the drag variation is not too different from that predicted for an unbounded shear layer, while if it is small the differences are marked, with the drag being enhanced by a considerable factor at low Richardson numbers (Ri). The drag may be further enhanced by nonlinear processes, but its qualitative variation for relatively low Ri is essentially unchanged. However, nonlinear processes seem to interact constructively with shear, so that the drag for a noninfinite but relatively high Ri is considerably larger than the drag without any shear at all.
Resumo:
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin- 3-yl)-2,2′ : 6′,2′′-terpyridine (CyMe4-hemi-BTBP) has been synthesized and its interactions with Am(III),U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UVabsorption spectrophotometry, NMR studies and ESI-MS. Structures of 1 : 1 complexes with Eu(III), Ce(III) and the linear uranyl (UO2 2+) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III)complex is higher. 1H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1 : 1 complexes with Eu(III), Ce(III) and Yb(III), while both 1 : 1 and 1 : 2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2 : 2 helical complexes was formed with Cu(I), with a slight preference (1.4 : 1) for a single directional isomer. In contrast, a 1 : 1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III)from Ln(III) by quadridentate N-donor ligands.
Resumo:
Sensory perception has been found to change during ageing. The perception of mouth feel by older adults, and the role of ageing on the sensory perception of texture attributes is uncertain. . This study investigated perception of the textural attributes of thickness, mouth-coating and mouth-drying, in the context of dairy beverages, by older and younger adults. Just noticeable differences (JND) of a starch thickener and for cream concentration within milk were established for thickness and mouth-coating perception, finding no age-related differences between participant groups. Mouth-drying was assessed through the directional paired comparison of a mouth-drying milk beverage to a skimmed milk sample. The older adults were found to be more sensitive to mouth-drying (p=0.03) than the younger adults. This study found no age-related decline in texture perception with older adults finding perception of some attributes such as mouth-drying enhanced by ageing.
Resumo:
During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3 in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.
Resumo:
Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.
Resumo:
This mini-review details the recent development of self-healing and mendable polymeric materials which take advantage of the reversible characteristics of non-covalent interactions during their physical recovery process. Supramolecular polymer systems which undergo spontaneous (autonomous) healing, as well as those which require external stimuli to initiate the healing process (healable/mendable), are introduced and discussed. Supramolecular polymers offer key advantages over alternative approaches, as these materials can typically withstand multiple healing cycles without substantial loss of performance, as a consequence of the highly directional and fully reversible non-covalent interactions present within the polymer matrix.