67 resultados para Diffusion intracellulaire
Resumo:
The UK industry has been criticised for being slow to adopt construction process innovations. Research shows that the idiosyncrasies of participants, their roles in the system and the contextual differences between sections of the industry make this a highly complex problem. There is considerable evidence that informal social networks play a key role in diffusion of innovations. The aim is to identify informal communication networks of project participants and the role these play in the diffusion of construction innovations. The characteristics of this network will be analysed in order to understand how they can be used to accelerate innovation diffusion within and between projects. Social Network Analysis is used to determine informal communication routes. Control and experiment case study projects are used within two different organizations. This allows informal communication routes concerning innovations to be mapped, whilst testing if the informal routes can facilitate diffusion. Analysis will focus upon understanding the combination of informal strong and weak ties, and how these impede or facilitate the diffusion of the innovation. Initial work suggests the presence of an informal communication network. Actors within this informal network, and the organization's management are unaware of its' existence and their informal roles within it. Thus, the network remains an untapped medium regarding innovation diffusion. It is proposed that successful innovation diffusion is dependent upon understanding informal strong and weak ties, at project, organization and industry level.
Resumo:
The research uses a sociological perspective to build an improved, context specific understanding of innovation diffusion within the UK construction industry. It is argued there is an iterative interplay between actors and the social system they occupy that directly influences the diffusion process as well as the methodology adopted. The research builds upon previous findings that argued a level of best fit for the three innovation diffusion concepts of cohesion, structural equivalence and thresholds. That level of best fit is analysed here using empirical data from the UK construction industry. This analysis allows an understanding of how the relative importance of these concepts' actually varies within the stages of the innovation diffusion process. The conclusion that the level of relevance fluctuates in relation to the stages of the diffusion process is a new development in the field.
Resumo:
The UK Construction Industry has been criticized for being slow to change and adopt innovations. The idiosyncrasies of participants, their roles in a social system and the contextual differences between sections of the UK Construction Industry are viewed as being paramount to explaining innovation diffusion within this context. Three innovation diffusion theories from outside construction management literature are introduced, Cohesion, Structural Equivalence and Thresholds. The relevance of each theory, in relation to the UK Construction Industry, is critically reviewed using literature and empirical data. Analysis of the data results in an explanatory framework being proposed. The framework introduces a Personal Awareness Threshold concept, highlights the dominant role of Cohesion through the main stages of diffusion, together with the use of Structural Equivalence during the later stages of diffusion and the importance of Adoption Threshold levels.
Resumo:
An analysis of Stochastic Diffusion Search (SDS), a novel and efficient optimisation and search algorithm, is presented, resulting in a derivation of the minimum acceptable match resulting in a stable convergence within a noisy search space. The applicability of SDS can therefore be assessed for a given problem.
Resumo:
An information processing paradigm in the brain is proposed, instantiated in an artificial neural network using biologically motivated temporal encoding. The network will locate within the external world stimulus, the target memory, defined by a specific pattern of micro-features. The proposed network is robust and efficient. Akin in operation to the swarm intelligence paradigm, stochastic diffusion search, it will find the best-fit to the memory with linear time complexity. information multiplexing enables neurons to process knowledge as 'tokens' rather than 'types'. The network illustrates possible emergence of cognitive processing from low level interactions such as memory retrieval based on partial matching. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The current study aims to assess the applicability of direct or indirect normalization for the analysis of fractional anisotropy (FA) maps in the context of diffusion-weighted images (DWIs) contaminated by ghosting artifacts. We found that FA maps acquired by direct normalization showed generally higher anisotropy than indirect normalization, and the disparities were aggravated by the presence of ghosting artifacts in DWIs. The voxel-wise statistical comparisons demonstrated that indirect normalization reduced the influence of artifacts and enhanced the sensitivity of detecting anisotropy differences between groups. This suggested that images contaminated with ghosting artifacts can be sensibly analyzed using indirect normalization.
Resumo:
We present a novel approach to calculating Low-Energy Electron Diffraction (LEED) intensities for ordered molecular adsorbates. First, the intra-molecular multiple scattering is computed to obtain a non-diagonal molecular T-matrix. This is then used to represent the entire molecule as a single scattering object in a conventional LEED calculation, where the Layer Doubling technique is applied to assemble the different layers, including the molecular ones. A detailed comparison with conventional layer-type LEED calculations is provided to ascertain the accuracy of this scheme of calculation. Advantages of this scheme for problems involving ordered arrays of molecules adsorbed on surfaces are discussed.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.