26 resultados para Differential Expression Profiling


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lymph heart is a sac-like structure on either side of avian tail. In some adult birds, it empties the lymph from the copulatory organ; however, during embryonic development, it is thought to circulate extra-embryonic lymph. Very little is known about the origin, innervation and the cellular changes it undergoes during development. Using immunohistochemistry and gene expression profiling we show that the musculature of the lymph heart is initially composed solely of striated skeletal muscle but later develops an additional layer composed of smooth myofibroblasts. Chick-quail fate-mapping demonstrates that the lymph heart originates from the hypaxial compartments of somites 34-41. The embryonic lymph heart is transiently innervated by somatic motoneurons with no autonomic input. In comparison to body muscles, the lymph heart has different sensitivity to neuromuscular junction blockers (sensitive only to decamethonium). Furthermore, its abundant bungarotoxin-positive acetylcholinesterase receptors are unique as they completely lack specific acetylcholinesterase activity. Several lines of evidence suggest that the lymph heart may possess an intrinsic pacing mechanism. Finally, we assessed the function of the lymph heart during embryogenesis and demonstrate that it is responsible for preventing embryonic oedema in birds, a role previously thought to be played by body skeletal muscle contractions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we introduce a computer database that allows for the rapid retrieval of physicochemical properties, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes information about a protein or a list of proteins. We applied PIGOK analyzing Schizosaccharomyces pombe proteins displaying differential expression under oxidative stress and identified their biological functions and pathways. The database is available on the Internet at http://pc4-133.ludwig.ucl.ac.uk/pigok.html.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Daphnia magna is a key invertebrate in the freshwater environment and is used widely as a model in ecotoxicological measurements and risk assessment. Understanding the genomic responses of D. magna to chemical challenges will be of value to regulatory authorities worldwide. Here we exposed D. magna to the insecticide methomyl and the herbicide propanil to compare phenotypic effects with changes in mRNA expression levels. Both pesticides are found in drainage ditches and surface water bodies standing adjacent to crops. Methomyl, a carbamate insecticide widely used in agriculture, inhibits acetylcholinesterase, a key enzyme in nerve transmission. Propanil, an acetanilide herbicide, is used to control grass and broad-leaf weeds. The phenotypic effects of single doses of each chemical were evaluated using a standard immobilisation assay. Immobilisation was linked to global mRNA expression levels using the previously estimated 48h-EC(1)s, followed by hybridization to a cDNA microarray with more than 13,000 redundant cDNA clones representing >5000 unique genes. Following exposure to methomyl and propanil, differential expression was found for 624 and 551 cDNAs, respectively (one-way ANOVA with Bonferroni correction, P

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Due to the heterogeneity in the biological behavior of prostate cancer, biomarkers that can reliably distinguish indolent from aggressive disease are urgently needed to inform treatment choices. METHODS: We employed 8-plex isobaric Tags for Relative and Absolute Quantitation (iTRAQ), to profile the proteomes of two distinct panels of isogenic prostate cancer cells with varying growth and metastatic potentials, in order to identify novel biomarkers associated with progression. The LNCaP, LNCaP-Pro5, and LNCaP-LN3 panel of cells represent a model of androgen-responsive prostate cancer, while the PC-3, PC-3M, and PC-3M-LN4 panel represent a model of androgen-insensitive disease. RESULTS: Of the 245 unique proteins identified and quantified (>or=95% confidence; >or=2 peptides/protein), 17 showed significant differential expression (>or=+/-1.5), in at least one of the variant LNCaP cells relative to parental cells. Similarly, comparisons within the PC-3 panel identified 45 proteins to show significant differential expression in at least one of the variant PC-3 cells compared with parental cells. Differential expression of selected candidates was verified by Western blotting or immunocytochemistry, and corresponding mRNA expression was determined by quantitative real-time PCR (qRT-PCR). Immunostaining of prostate tissue microarrays for ERp5, one of the candidates identified, showed a significant higher immunoexpression in pre-malignant lesions compared with non-malignant epithelium (P < 0.0001, Mann-Whitney U-test), and in high Gleason grade (4-5) versus low grade (2-3) cancers (P < 0.05). CONCLUSIONS: Our study provides proof of principle for the application of an 8-plex iTRAQ approach to uncover clinically relevant candidate biomarkers for prostate cancer progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: The use of triclosan within various environments has been linked to the development of multiple drug resistance (MDR) through the increased expression of efflux pumps such as AcrAB-ToIC. In this work, we investigate the effect of triclosan exposure in order to ascertain the response of two species to the presence of this widely used biocide. Methods: The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 and Escherichia coli K-12 MG1655 after exposure to the MIC of triclosan (0.12 mg/L) were determined in microarray experiments. Phenotypic validation of the transcriptomic data included RT-PCR, ability to form a biofilm and motility assays. Results: Despite important differences in the triclosan-dependent transcriptomes of the two species, increased expression of efflux pump component genes was seen in both. Increased expression of soxS was observed in Salmonella Typhimurium, however, within E. coli, decreased expression was seen. Expression of fabBAGI in Salmonella Typhimurium was decreased, whereas in E. coli expression of fabABFH was increased. Increased expression of ompR and genes within this regulon (e.g. ompC, csgD and ssrA) was seen in the transcriptome of Salmonella Typhimurium. An unexpected response of E. coli was the differential expression of genes within operons involved in iron homeostasis; these included fhu, fep and ent. Conclusions: These data indicate that whilst a core response to triclosan exposure exists, the differential transcriptome of each species was different. This suggests that E. coli K-12 should not be considered the paradigm for the Enterobacteriaceae when exploring the effects of antimicrobial agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: The aim of this study was to determine and compare the proteomes of three triclosan-resistant mutants of Salmonella enterica serovar Typhimurium in order to identify proteins involved in triclosan resistance. Methods: The proteomes of three distinct but isogenic triclosan-resistant mutants were determined using two-dimensional liquid chromatography mass separation. Bioinformatics was then used to identify and quantify tryptic peptides in order to determine protein expression. Results: Proteomic analysis of the triclosan-resistant mutants identified a common set of proteins involved in production of pyruvate or fatty acid with differential expression in all mutants, but also demonstrated specific patterns of expression associated with each phenotype. Conclusions: These data show that triclosan resistance can occur via distinct pathways in Salmonella, and demonstrate a novel triclosan resistance network that is likely to have relevance to other pathogenic bacteria subject to triclosan exposure and may provide new targets for development of antimicrobial agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing amount of available expressed gene sequence data makes whole-transcriptome analysis of certain crop species possible. Potato currently has the second largest number of publicly available expressed sequence tag (EST) sequences among the Solanaceae. Most of these ESTs, plus other proprietary sequences, were combined and used to generate a unigene assembly. The set of 246,182 sequences produced 46,345 unigenes, which were used to design a 44K 60-mer oligo array (Potato Oligo Chip Initiative: POCI). In this study, we attempt to identify genes controlling and driving the process of tuber initiation and growth by implementing large-scale transcriptional changes using the newly developed POCI array. Major gene expression profiles could be identified exhibiting differential expression at key developmental stages. These profiles were associated with functional roles in cell division and growth. A subset of genes involved in the regulation of the cell cycle, based on their Gene Ontology classification, exhibit a clear transient upregulation at tuber onset indicating increased cell division during these stages. The POCI array allows the study of potato gene expression on a much broader level than previously possible and will greatly enhance analysis of transcriptional control mechanisms in a wide range of potato research areas. POCI sequence and annotation data are publicly available through the POCI database (http://pgrc.ipk-gatersleben.de/poci).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Somatic embryogenesis (SE) in plants is a process by which embryos are generated directly from somatic cells, rather than from the fused products of male and female gametes. Despite the detailed expression analysis of several somatic-to-embryonic marker genes, a comprehensive understanding of SE at a molecular level is still lacking. The present study was designed to generate high resolution transcriptome datasets for early SE providing the way for future research to understand the underlying molecular mechanisms that regulate this process. We sequenced Arabidopsis thaliana somatic embryos collected from three distinct developmental time-points (5, 10 and 15 d after in vitro culture) using the Illumina HiSeq 2000 platform. Results This study yielded a total of 426,001,826 sequence reads mapped to 26,520 genes in the A. thaliana reference genome. Analysis of embryonic cultures after 5 and 10 d showed differential expression of 1,195 genes; these included 778 genes that were more highly expressed after 5 d as compared to 10 d. Moreover, 1,718 genes were differentially expressed in embryonic cultures between 10 and 15 d. Our data also showed at least eight different expression patterns during early SE; the majority of genes are transcriptionally more active in embryos after 5 d. Comparison of transcriptomes derived from somatic embryos and leaf tissues revealed that at least 4,951 genes are transcriptionally more active in embryos than in the leaf; increased expression of genes involved in DNA cytosine methylation and histone deacetylation were noted in embryogenic tissues. In silico expression analysis based on microarray data found that approximately 5% of these genes are transcriptionally more active in somatic embryos than in actively dividing callus and non-dividing leaf tissues. Moreover, this identified 49 genes expressed at a higher level in somatic embryos than in other tissues. This included several genes with unknown function, as well as others related to oxidative and osmotic stress, and auxin signalling. Conclusions The transcriptome information provided here will form the foundation for future research on genetic and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; the genes more highly expressed in somatic embryos than in vegetative tissues can be considered as potential candidates to validate these networks.