35 resultados para Design for Repair,DfR,Design for X,sostenibilità,turbina eolica,riduttore,riparazione


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic pi-pi stacking between the pi-electron-deficient diimide groups and the pi-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the pi-pi stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the subset selection cost function includes an A-optimality design criterion to minimize the variance of the parameter estimates that ensures the adequacy and parsimony of the final model. An illustrative example is included to demonstrate the effectiveness of the new approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The tripeptides Boc-Gly-Aib-m-ABA-OMe (I), Boc-beta Ala-Aib-m-ABA-OMe (II) and Boc-gamma Abu-Aib-rn-ABA-OMe (III) (Aib: alpha-aminoisobutyric acid, beta Ala: beta-alanine, gamma Abu: gamma-aminobutyric acid, m-ABA: meta-aminobenzoic acid) with homologated amino acids at the N-terminus, the rigid gamma-amino acid m-ABA at the C-terminus and the helicogenic Aib at the central position have been chosen to create unusual turns. Single crystal X-ray diffraction studies, solvent dependent NMR titrations and 2D NMR analysis reveal that peptides II and III adopt unusual turns of 11- and 12-membered rings stabilized by modified 4 -> 1 type intramolecular hydrogen bonds. Solution phase studies indicate that peptide I exists in the beta-turn conformation stabilized by 10-membered intramolecular hydrogen bonding.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Polyvinylpyrrolidone is a widely used in tablet formulations with the linear form acting as a wetting agent and disintegrant whereas the cross-linked form is a super-disintegrant. We have previously reported that simply mixing the commercial cross-linked polymer with ibuprofen disrupted drug crystallinity with consequent improvements in drug dissolution behavior. In this study, we have designed and synthesized novel cross-linking agents containing a range of oligoether moieties which have then be polymerized with vinylpyrrolidone to generate a suite of novel excipients with enhanced hydrogen-bonding capabilities. The polymers have a porous surface and swell in most common solvents and in water; properties which suggest their value as disintegrants. The polymers were evaluated in simple physical mixtures with ibuprofen as a model poorly-water soluble drug. The results show that the novel PVPs induce the drug to become “X-ray amorphous”, which increased dissolution to a greater extent than that seen with commercial cross-linked PVP. The polymers stabilize the amorphous drug with no evidence for recrystallization seen after 20 weeks storage.