32 resultados para Degenerating Hyperbolic Manifolds


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of mental states from neural states by partitioning the neural phase space is analyzed in terms of symbolic dynamics. Well-defined mental states provide contexts inducing a criterion of structural stability for the neurodynamics that can be implemented by particular partitions. This leads to distinguished subshifts of finite type that are either cyclic or irreducible. Cyclic shifts correspond to asymptotically stable fixed points or limit tori whereas irreducible shifts are obtained from generating partitions of mixing hyperbolic systems. These stability criteria are applied to the discussion of neural correlates of consiousness, to the definition of macroscopic neural states, and to aspects of the symbol grounding problem. In particular, it is shown that compatible mental descriptions, topologically equivalent to the neurodynamical description, emerge if the partition of the neural phase space is generating. If this is not the case, mental descriptions are incompatible or complementary. Consequences of this result for an integration or unification of cognitive science or psychology, respectively, will be indicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E-3, the spheres S-3 and the hyperboloids H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions are illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers left-invariant control systems defined on the orthonormal frame bundles of simply connected manifolds of constant sectional curvature, namely the space forms Euclidean space E-3, the sphere S-3 and Hyperboloid H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1, 3). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. In the Euclidean case the elements of the Lie algebra se(3) are often referred to as twists. For constant twist motions, the corresponding curves g(t) is an element of SE(3) are known as screw motions, given in closed form by using the well known Rodrigues' formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E³, the spheres S³ and the hyperboloids H³ with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions is illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new surface-crossing algorithm suitable for describing bond-breaking and bond-forming processes in molecular dynamics simulations is presented. The method is formulated for two intersecting potential energy manifolds which dissociate to different adiabatic states. During simulations, crossings are detected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed over a finite number of time steps, after which the system is propagated on the second adiabat and the crossing is carried out with probability one. The algorithm is extensively tested (almost 0.5 mu s of total simulation time) for the rebinding of NO to myoglobin. The unbound surface ((FeNO)-N-...) is represented using a standard force field, whereas the bound surface (Fe-NO) is described by an ab initio potential energy surface. The rebinding is found to be nonexponential in time, in agreement with experimental studies, and can be described using two time constants. Depending on the asymptotic energy separation between the manifolds, the short rebinding timescale is between 1 and 9 ps, whereas the longer timescale is about an order of magnitude larger. NO molecules which do not rebind within 1 ns are typically found in the Xenon-4 pocket, indicating the high affinity of NO to this region in the protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes a utility-based framework for the determination of optimal hedge ratios (OHRs) that can allow for the impact of higher moments on hedging decisions. We examine the entire hyperbolic absolute risk aversion family of utilities which include quadratic, logarithmic, power, and exponential utility functions. We find that for both moderate and large spot (commodity) exposures, the performance of out-of-sample hedges constructed allowing for nonzero higher moments is better than the performance of the simpler OLS hedge ratio. The picture is, however, not uniform throughout our seven spot commodities as there is one instance (cotton) for which the modeling of higher moments decreases welfare out-of-sample relative to the simpler OLS. We support our empirical findings by a theoretical analysis of optimal hedging decisions and we uncover a novel link between OHRs and the minimax hedge ratio, that is the ratio which minimizes the largest loss of the hedged position. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec−1) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) concentrations in surface waters have increased across much of Europe and North America, with implications for the terrestrial carbon balance, aquatic ecosystem functioning, water treatment costs and human health. Over the past decade, many hypotheses have been put forward to explain this phenomenon, from changing climate and land-management to eutrophication and acid deposition. Resolution of this debate has been hindered by a reliance on correlative analyses of time-series data, and a lack of robust experimental testing of proposed mechanisms. In a four-year, four-site replicated field experiment involving both acidifying and de-acidifying treatments, we tested the hypothesis that DOC leaching was previously suppressed by high levels of soil acidity in peat and organo-mineral soils, and therefore that observed DOC increases a consequence of decreasing soil acidity. We observed a consistent, positive relationship between DOC and acidity change at all sites. Responses were described by similar hyperbolic relationships between standardised changes in DOC and hydrogen ion concentrations at all sites, suggesting potentially general applicability. These relationships explained a substantial proportion of observed changes in peak DOC concentrations in nearby monitoring streams, and application to a UK-wide upland soil pH dataset suggests that recovery from acidification alone could have led to soil solution DOC increases in the range 46-126% by habitat type since 1978. Our findings raise the possibility that changing soil acidity may have wider impacts on ecosystem carbon balances. Decreasing sulphur deposition may be accelerating terrestrial carbon loss, and returning surface waters to a natural, high-DOC condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove essential self-adjointness of a class of Dirichlet operators in ℝn using the hyperbolic equation approach. This method allows one to prove essential self-adjointness under minimal conditions on the logarithmic derivative of the density and a condition of Muckenhoupt type on the density itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the boundedness and compactness of Toeplitz operators Ta on Bergman spaces , 1 < p < ∞. The novelty is that we allow distributional symbols. It turns out that the belonging of the symbol to a weighted Sobolev space of negative order is sufficient for the boundedness of Ta. We show the natural relation of the hyperbolic geometry of the disc and the order of the distribution. A corresponding sufficient condition for the compactness is also derived.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the boundedness of Toeplitz operators $T_a$ with locally integrable symbols on Bergman spaces $A^p(\mathbb{D})$, $1 < p < \infty$. Our main result gives a sufficient condition for the boundedness of $T_a$ in terms of some ``averages'' (related to hyperbolic rectangles) of its symbol. If the averages satisfy an ${o}$-type condition on the boundary of $\mathbb{D}$, we show that the corresponding Toeplitz operator is compact on $A^p$. Both conditions coincide with the known necessary conditions in the case of nonnegative symbols and $p=2$. We also show that Toeplitz operators with symbols of vanishing mean oscillation are Fredholm on $A^p$ provided that the averages are bounded away from zero, and derive an index formula for these operators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper is to show that the group SE(3) with an imposed Lie-Poisson structure can be used to determine the trajectory in a spatial frame of a rigid body in Euclidean space. Identical results for the trajectory are obtained in spherical and hyperbolic space by scaling the linear displacements appropriately since the influence of the moments of inertia on the trajectories tends to zero as the scaling factor increases. The semidirect product of the linear and rotational motions gives the trajectory from a body frame perspective. It is shown that this cannot be used to determine the trajectory in the spatial frame. The body frame trajectory is thus independent of the velocity coupling. In addition, it is shown that the analysis can be greatly simplified by aligning the axes of the spatial frame with the axis of symmetry which is unchanging for a natural system with no forces and rotation about an axis of symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection–diffusion equations. We demonstrate how a number of Runge–Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge–Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge–Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.