58 resultados para Decision-support tools
Resumo:
Background: This study was carried out as part of a European Union funded project (PharmDIS-e+), to develop and evaluate software aimed at assisting physicians with drug dosing. A drug that causes particular problems with drug dosing in primary care is digoxin because of its narrow therapeutic range and low therapeutic index. Objectives: To determine (i) accuracy of the PharmDIS-e+ software for predicting serum digoxin levels in patients who are taking this drug regularly; (ii) whether there are statistically significant differences between predicted digoxin levels and those measured by a laboratory and (iii) whether there are differences between doses prescribed by general practitioners and those suggested by the program. Methods: We needed 45 patients to have 95% Power to reject the null hypothesis that the mean serum digoxin concentration was within 10% of the mean predicted digoxin concentration. Patients were recruited from two general practices and had been taking digoxin for at least 4 months. Exclusion criteria were dementia, low adherence to digoxin and use of other medications known to interact to a clinically important extent with digoxin. Results: Forty-five patients were recruited. There was a correlation of 0·65 between measured and predicted digoxin concentrations (P < 0·001). The mean difference was 0·12 μg/L (SD 0·26; 95% CI 0·04, 0·19, P = 0·005). Forty-seven per cent of the patients were prescribed the same dose as recommended by the software, 44% were prescribed a higher dose and 9% a lower dose than recommended. Conclusion: PharmDIS-e+ software was able to predict serum digoxin levels with acceptable accuracy in most patients.
Resumo:
The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.
Resumo:
Johne's disease in cattle is a contagious wasting disease caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's infection is characterised by a long subclinical phase and can therefore go undetected for long periods of time during which substantial production losses can occur. The protracted nature of Johne's infection therefore presents a challenge for both veterinarians and farmers when discussing control options due to a paucity of information and limited test performance when screening for the disease. The objectives were to model Johne's control decisions in suckler beef cattle using a decision support approach, thus implying equal focus on ‘end user’ (veterinarian) participation whilst still focusing on the technical disease modelling aspects during the decision support model development. The model shows how Johne's disease is likely to affect a herd over time both in terms of physical and financial impacts. In addition, the model simulates the effect on production from two different Johne's control strategies; herd management measures and test and cull measures. The article also provides and discusses results from a sensitivity analysis to assess the effects on production from improving the currently available test performance. Output from running the model shows that a combination of management improvements to reduce routes of infection and testing and culling to remove infected and infectious animals is likely to be the least-cost control strategy.
Resumo:
Aim: To develop a list of prescribing indicators specific for the hospital setting that would facilitate the prospective collection of high severity and/or high frequency prescribing errors, which are also amenable to electronic clinical decision support (CDS). Method: A three-stage consensus technique (electronic Delphi) was carried out with 20 expert pharmacists and physicians across England. Participants were asked to score prescribing errors using a 5-point Likert scale for their likelihood of occurrence and the severity of the most likely outcome. These were combined to produce risk scores, from which median scores were calculated for each indicator across the participants in the study. The degree of consensus between the participants was defined as the proportion that gave a risk score in the same category as the median. Indicators were included if a consensus of 80% or more was achieved. Results: A total of 80 prescribing errors were identified by consensus as being high or extreme risk. The most common drug classes named within the indicators were antibiotics (n=13), antidepressants (n=8), nonsteroidal anti-inflammatory drugs (n=6), and opioid analgesics (n=6).The most frequent error type identified as high or extreme risk were those classified as clinical contraindications (n=29/80). Conclusion: 80 high risk prescribing errors in the hospital setting have been identified by an expert panel. These indicators can serve as the basis for a standardised, validated tool for the collection of data in both paperbased and electronic prescribing processes, as well as to assess the impact of electronic decision support implementation or development.
Resumo:
An appraisal task involves the rendering of market value, an unobservable and hypothetical construct. Direct feedback against this objective is typically not possible, so alternative feedback such as confirmation of previous appraised values may be employed. This may alter the appraiser’s perception of the valuation objective leading to divergence from the appraisal normative model. The real estate literature suggests appraisers have been susceptible to the influence of previous appraised values, often resulting in biased valuations. This research focuses on the efficacy of a decision support tool in eliminating or subduing this bias in the appraisal process.
Resumo:
Mycoplasma gallisepticum (MG) is a bacterium that causes respiratory disease in chickens, leading to reduced egg production. A dynamic simulation model was developed that can be used to assess the costs and benefits of control using antimicrobials or vaccination in caged or free range systems. The intended users are veterinarians and egg producers. A user interface is provided for input of flock specific parameters. The economic consequence of an MG outbreak is expressed as a reduction in expected egg output. The model predicts that either vaccination or microbial treatment can approximately halve potential losses from MG in some circumstances. Sensitivity analysis is used to test assumptions about infection rate and timing of an outbreak. Feedback from veterinarians points to the value of the model as a discussion tool with producers.
Resumo:
In order to enhance the quality of care, healthcare organisations are increasingly resorting to clinical decision support systems (CDSSs), which provide physicians with appropriate health care decisions or recommendations. However, how to explicitly represent the diverse vague medical knowledge and effectively reason in the decision-making process are still problems we are confronted. In this paper, we incorporate semiotics into fuzzy logic to enhance CDSSs with the aim of providing both the abilities of describing medical domain concepts contextually and reasoning with vague knowledge. A semiotically inspired fuzzy CDSSs framework is presented, based on which the vague knowledge representation and reasoning process are demonstrated.
Resumo:
The aim of this paper is to develop a comprehensive taxonomy of green supply chain management (GSCM) practices and develop a structural equation modelling-driven decision support system following GSCM taxonomy for managers to provide better understanding of the complex relationship between the external and internal factors and GSCM operational practices. Typology and/or taxonomy play a key role in the development of social science theories. The current taxonomies focus on a single or limited component of the supply chain. Furthermore, they have not been tested using different sample compositions and contexts, yet replication is a prerequisite for developing robust concepts and theories. In this paper, we empirically replicate one such taxonomy extending the original study by (a) developing broad (containing the key components of supply chain) taxonomy; (b) broadening the sample by including a wider range of sectors and organisational size; and (c) broadening the geographic scope of the previous studies. Moreover, we include both objective measures and subjective attitudinal measurements. We use a robust two-stage cluster analysis to develop our GSCM taxonomy. The main finding validates the taxonomy previously proposed and identifies size, attitude and level of environmental risk and impact as key mediators between internal drivers, external drivers and GSCM operational practices.