83 resultados para Decentralized MAC Schemes
Resumo:
Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.
Resumo:
In a recent paper [P. Glaister, Conservative upwind difference schemes for compressible flows in a Duct, Comput. Math. Appl. 56 (2008) 1787–1796] numerical schemes based on a conservative linearisation are presented for the Euler equations governing compressible flows of an ideal gas in a duct of variable cross-section, and in [P. Glaister, Conservative upwind difference schemes for compressible flows of a real gas, Comput. Math. Appl. 48 (2004) 469–480] schemes based on this philosophy are presented for real gas flows with slab symmetry. In this paper we seek to extend these ideas to encompass compressible flows of real gases in a duct. This will incorporate the handling of additional terms arising out of the variable geometry and the non-ideal nature of the gas.
Resumo:
Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users’ experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents improvement on a high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.2 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed improved and optimal Dual Circular 32-QAM (DC 32-QAM). The system performance for improved and optimal DC 32-QAM modulation is presented and compared with previous DC 32- QAM, 16-QAM and DCM.
Resumo:
A primary objective of agri-environment schemes is the conservation of biodiversity; in addition to increasing the value of farmland for wildlife, these schemes also aim to restore natural ecosystem functioning. The management of scheme options can influence their value for delivering ecosystem services by modifying the composition of floral and faunal communities. This study examines the impact of an agri-environment scheme prescription on ecosystem functioning by testing the hypothesis that vegetation management influences decomposition rates in grassy arable field margins. The effects of two vegetation management practices in arable field margins - cutting and soil disturbance (scarification) - on litter decomposition were compared using a litterbag experimental approach in early April 2006. Bags had either small mesh designed to restrict access to soil macrofauna, or large mesh that would allow macrofauna to enter. Bags were positioned on the soil surface or inserted into the soil in cut and scarified margins, retrieved after 44, 103 and 250 days and the amount of litter mass remaining was calculated. Litter loss from the litterbags with large mesh was greater than from the small mesh bags, providing evidence that soil macrofauna accelerate rates of litter decomposition. In the large mesh bags, the proportion of litter remaining in bags above and belowground in the cut plots was similar, while in the scarified plots, there was significantly more litter left in the aboveground bags than in the belowground bags. This loss of balance between decomposition rates above and belowground in scarified margins may have implications for the development and maintenance of grassy arable field margins by influencing nutrient availability for plant communities. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A means of assessing, monitoring and controlling aggregate emissions from multi-instrument Emissions Trading Schemes is proposed. The approach allows contributions from different instruments with different forms of emissions targets to be integrated. Where Emissions Trading Schemes are helping meet specific national targets, the approach allows the entry requirements of new participants to be calculated and set at a level that will achieve these targets. The approach is multi-levelled, and may be extended downwards to support pooling of participants within instruments, or upwards to embed Emissions Trading Schemes within a wider suite of policies and measures with hard and soft targets. Aggregate emissions from each instrument are treated stochastically. Emissions from the scheme as a whole are then the joint probability distribution formed by integrating the emissions from its instruments. Because a Bayesian approach is adopted, qualitative and semi-qualitative data from expert opinion can be used where quantitative data is not currently available, or is incomplete. This approach helps government retain sufficient control over emissions trading scheme targets to allow them to meet their emissions reduction obligations, while minimising the need for retrospectively adjusting existing participants’ conditions of entry. This maintains participant confidence, while providing the necessary policy levers for good governance.
Resumo:
Taipei City has put a significant effort toward the implementation of green design and green building schemes towards a sustainable eco-city. Although some of the environmental indicators have not indicated significant progress in environmental improvement, implementing the two schemes has obtained considerable results; therefore, the two schemes are on the right path towards promoting a sustainable eco-city. However, it has to be admitted that the two schemes are a rather “technocratic” set of solutions and eco-centric approach. It is suggested that not only the public sector but also the private sector need to put more effort toward implement the schemes, and the government needs to encourage the private sector to adopt the schemes in practice.
Resumo:
A method to map all the variants of the IEEE 802.11 MAC frames into the Multiband OFDM based ECMA-368 Physical standard is proposed, without contravening the standard. The transportation of IEEE 802.11 MAC frames over ECMA-368 allows for the migration current of Wireless LAN applications towards a Wireless Personal Area Network (WPAN) solution. This system benefits the Consumer Electronics Market as the high data-rate WPAN is capable of transporting broadcast-quality video while the same system can also transport existing applications available today, maintaining existing effort, products and backward-compatibility(1).
Resumo:
In models of complicated physical-chemical processes operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The recently rediscovered weighted splitting schemes have the great advantage of being parallelizable on operator level, which allows us to reduce the computational time if parallel computers are used. In this paper, the computational times needed for the weighted splitting methods are studied in comparison with the sequential (S) splitting and the Marchuk-Strang (MSt) splitting and are illustrated by numerical experiments performed by use of simplified versions of the Danish Eulerian model (DEM).
Resumo:
Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.
Resumo:
Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents an alternative high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.1 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed Dual Circular 32-QAM (DC 32-QAM). The system performance for DC 32-QAM modulation is presented and compared with 16-QAM and DCM1.