47 resultados para Data-Driven Behavior Modeling
Resumo:
The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess functional impact of motor manifestations in prHD and early HD individuals.
Resumo:
Hocaoglu MB, Gaffan EA, Ho AK. The Huntington's disease health-related quality of life questionnaire: a disease-specific measure of health-related quality of life. Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by motor, cognitive and psychiatric disturbances, and yet there is no disease-specific patient-reported health-related quality of life outcome measure for patients. Our aim was to develop and validate such an instrument, i.e. the Huntington's Disease health-related Quality of Life questionnaire (HDQoL), to capture the true impact of living with this disease. Semi-structured interviews were conducted with the full spectrum of people living with HD, to form a pool of items, which were then examined in a larger sample prior to data-driven item reduction. We provide the statistical basis for the extraction of three different sets of scales from the HDQoL, and present validation and psychometric data on these scales using a sample of 152 participants living with HD. These new patient-derived scales provide promising patient-reported outcome measures for HD.
Resumo:
A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of continental boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze cloud-aerosol relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.
Resumo:
Current methods for estimating event-related potentials (ERPs) assume stationarity of the signal. Empirical Mode Decomposition (EMD) is a data-driven decomposition technique that does not assume stationarity. We evaluated an EMD-based method for estimating the ERP. On simulated data, EMD substantially reduced background EEG while retaining the ERP. EMD-denoised single trials also estimated shape, amplitude, and latency of the ERP better than raw single trials. On experimental data, EMD-denoised trials revealed event-related differences between two conditions (condition A and B) more effectively than trials lowpass filtered at 40 Hz. EMD also revealed event-related differences on both condition A and condition B that were clearer and of longer duration than those revealed by low-pass filtering at 40 Hz. Thus, EMD-based denoising is a promising data-driven, nonstationary method for estimating ERPs and should be investigated further.
Resumo:
A one-dimensional, thermodynamic, and radiative model of a melt pond on sea ice is presented that explicitly treats the melt pond as an extra phase. A two-stream radiation model, which allows albedo to be determined from bulk optical properties, and a parameterization of the summertime evolution of optical properties, is used. Heat transport within the sea ice is described using an equation describing heat transport in a mushy layer of a binary alloy (salt water). The model is tested by comparison of numerical simulations with SHEBA data and previous modeling. The presence of melt ponds on the sea ice surface is demonstrated to have a significant effect on the heat and mass balance. Sensitivity tests indicate that the maximum melt pond depth is highly sensitive to optical parameters and drainage. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic oceanography; 4255 Oceanography: General: Numerical modeling; 4299 Oceanography: General: General or miscellaneous; KEYWORDS: sea ice, melt pond, albedo, Arctic Ocean, radiation model, thermodynamic
Resumo:
Effective public policy to mitigate climate change footprints should build on data-driven analysis of firm-level strategies. This article’s conceptual approach augments the resource-based view (RBV) of the firm and identifies investments in four firm-level resource domains (Governance, Information management, Systems, and Technology [GISTe]) to develop capabilities in climate change impact mitigation. The authors denote the resulting framework as the GISTe model, which frames their analysis and public policy recommendations. This research uses the 2008 Carbon Disclosure Project (CDP) database, with high-quality information on firm-level climate change strategies for 552 companies from North America and Europe. In contrast to the widely accepted myth that European firms are performing better than North American ones, the authors find a different result. Many firms, whether European or North American, do not just “talk” about climate change impact mitigation, but actually do “walk the talk.” European firms appear to be better than their North American counterparts in “walk I,” denoting attention to governance, information management, and systems. But when it comes down to “walk II,” meaning actual Technology-related investments, North American firms’ performance is equal or superior to that of the European companies. The authors formulate public policy recommendations to accelerate firm-level, sector-level, and cluster-level implementation of climate change strategies.
Resumo:
Empirical mode decomposition (EMD) is a data-driven method used to decompose data into oscillatory components. This paper examines to what extent the defined algorithm for EMD might be susceptible to data format. Two key issues with EMD are its stability and computational speed. This paper shows that for a given signal there is no significant difference between results obtained with single (binary32) and double (binary64) floating points precision. This implies that there is no benefit in increasing floating point precision when performing EMD on devices optimised for single floating point format, such as graphical processing units (GPUs).
Resumo:
Empirical Mode Decomposition (EMD) is a data driven technique for extraction of oscillatory components from data. Although it has been introduced over 15 years ago, its mathematical foundations are still missing which also implies lack of objective metrics for decomposed set evaluation. Most common technique for assessing results of EMD is their visual inspection, which is very subjective. This article provides objective measures for assessing EMD results based on the original definition of oscillatory components.
Resumo:
We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate, and therefore extent, of GPVI-stimulated platelet activation.
Resumo:
Nonlinear data assimilation is high on the agenda in all fields of the geosciences as with ever increasing model resolution and inclusion of more physical (biological etc.) processes, and more complex observation operators the data-assimilation problem becomes more and more nonlinear. The suitability of particle filters to solve the nonlinear data assimilation problem in high-dimensional geophysical problems will be discussed. Several existing and new schemes will be presented and it is shown that at least one of them, the Equivalent-Weights Particle Filter, does indeed beat the curse of dimensionality and provides a way forward to solve the problem of nonlinear data assimilation in high-dimensional systems.
Resumo:
Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.
Case study of the use of remotely sensed data for modeling flood inundation on the river Severn, UK.
Resumo:
A methodology for using remotely sensed data to both generate and evaluate a hydraulic model of floodplain inundation is presented for a rural case study in the United Kingdom: Upton-upon-Severn. Remotely sensed data have been processed and assembled to provide an excellent test data set for both model construction and validation. In order to assess the usefulness of the data and the issues encountered in their use, two models for floodplain inundation were constructed: one based on an industry standard one-dimensional approach and the other based on a simple two-dimensional approach. The results and their implications for the future use of remotely sensed data for predicting flood inundation are discussed. Key conclusions for the use of remotely sensed data are that care must be taken to integrate different data sources for both model construction and validation and that improvements in ground height data shift the focus in terms of model uncertainties to other sources such as boundary conditions. The differences between the two models are found to be of minor significance.
Resumo:
Sensitivity, specificity, and reproducibility are vital to interpret neuroscientific results from functional magnetic resonance imaging (fMRI) experiments. Here we examine the scan–rescan reliability of the percent signal change (PSC) and parameters estimated using Dynamic Causal Modeling (DCM) in scans taken in the same scan session, less than 5 min apart. We find fair to good reliability of PSC in regions that are involved with the task, and fair to excellent reliability with DCM. Also, the DCM analysis uncovers group differences that were not present in the analysis of PSC, which implies that DCM may be more sensitive to the nuances of signal changes in fMRI data.
Resumo:
Event-related functional magnetic resonance imaging (efMRI) has emerged as a powerful technique for detecting brains' responses to presented stimuli. A primary goal in efMRI data analysis is to estimate the Hemodynamic Response Function (HRF) and to locate activated regions in human brains when specific tasks are performed. This paper develops new methodologies that are important improvements not only to parametric but also to nonparametric estimation and hypothesis testing of the HRF. First, an effective and computationally fast scheme for estimating the error covariance matrix for efMRI is proposed. Second, methodologies for estimation and hypothesis testing of the HRF are developed. Simulations support the effectiveness of our proposed methods. When applied to an efMRI dataset from an emotional control study, our method reveals more meaningful findings than the popular methods offered by AFNI and FSL. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.