144 resultados para Daily yield
Resumo:
[ 1] There has been a paucity of information on trends in daily climate and climate extremes, especially from developing countries. We report the results of the analysis of daily temperature ( maximum and minimum) and precipitation data from 14 south and west African countries over the period 1961 - 2000. Data were subject to quality control and processing into indices of climate extremes for release to the global community. Temperature extremes show patterns consistent with warming over most of the regions analyzed, with a large proportion of stations showing statistically significant trends for all temperature indices. Over 1961 to 2000, the regionally averaged occurrence of extreme cold ( fifth percentile) days and nights has decreased by - 3.7 and - 6.0 days/decade, respectively. Over the same period, the occurrence of extreme hot (95th percentile) days and nights has increased by 8.2 and 8.6 days/decade, respectively. The average duration of warm ( cold) has increased ( decreased) by 2.4 (0.5) days/decade and warm spells. Overall, it appears that the hot tails of the distributions of daily maximum temperature have changed more than the cold tails; for minimum temperatures, hot tails show greater changes in the NW of the region, while cold tails have changed more in the SE and east. The diurnal temperature range (DTR) does not exhibit a consistent trend across the region, with many neighboring stations showing opposite trends. However, the DTR shows consistent increases in a zone across Namibia, Botswana, Zambia, and Mozambique, coinciding with more rapid increases in maximum temperature than minimum temperature extremes. Most precipitation indices do not exhibit consistent or statistically significant trends across the region. Regionally averaged total precipitation has decreased but is not statistically significant. At the same time, there has been a statistically significant increase in regionally averaged daily rainfall intensity and dry spell duration. While the majority of stations also show increasing trends for these two indices, only a few of these are statistically significant. There are increasing trends in regionally averaged rainfall on extreme precipitation days and in maximum annual 5-day and 1-day rainfall, but only trends for the latter are statistically significant.
Resumo:
A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.
Resumo:
The effect of fluctuating daily surface fluxes on the time-mean oceanic circulation is studied using an empirical flux model. The model produces fluctuating fluxes resulting from atmospheric variability and includes oceanic feedbacks on the fluxes. Numerical experiments were carried out by driving an ocean general circulation model with three different versions of the empirical model. It is found that fluctuating daily fluxes lead to an increase in the meridional overturning circulation (MOC) of the Atlantic of about 1 Sv and a decrease in the Antarctic circumpolar current (ACC) of about 32 Sv. The changes are approximately 7% of the MOC and 16% of the ACC obtained without fluctuating daily fluxes. The fluctuating fluxes change the intensity and the depth of vertical mixing. This, in turn, changes the density field and thus the circulation. Fluctuating buoyancy fluxes change the vertical mixing in a non-linear way: they tend to increase the convective mixing in mostly stable regions and to decrease the convective mixing in mostly unstable regions. The ACC changes are related to the enhanced mixing in the subtropical and the mid-latitude Southern Ocean and reduced mixing in the high-latitude Southern Ocean. The enhanced mixing is related to an increase in the frequency and the depth of convective events. As these events bring more dense water downward, the mixing changes lead to a reduction in meridional gradient of the depth-integrated density in the Southern Ocean and hence the strength of the ACC. The MOC changes are related to more subtle density changes. It is found that the vertical mixing in a latitudinal strip in the northern North Atlantic is more strongly enhanced due to fluctuating fluxes than the mixing in a latitudinal strip in the South Atlantic. This leads to an increase in the density difference between the two strips, which can be responsible for the increase in the Atlantic MOC.
Resumo:
Diet digestibility and rate of passage, eating and rumination behavior, dry matter intake (DMI), and lactation performance were compared in 6 Jersey and 6 Holstein multiparous cows. Cows were fed gestation diets according to body weight (BW) beginning 7 wk before expected calving and ad libitum amounts of a lactation diet postpartum. Diet digestibility and rate of passage were measured in 5-d periods at wk 5 prepartum and wk 6 and 14 of lactation. Eating and ruminating behavior was measured over 5-d periods at wk 5 and 2 prepartum and wk 2, 6, 10, and 14 of lactation. Milk yield and DMI were higher in Holsteins, but milk energy output per kilogram of metabolic BW (BW0.75) and intake capacity (DMI/kg of BW) did not differ between breeds. Holsteins spent longer ruminating per day compared with Jerseys, but daily eating time did not differ between breeds. Jerseys spent more time eating and ruminating per unit of ingested feed. The duration and number of meals consumed did not differ between breeds, but the meals consumed by Jerseys were distributed more evenly throughout each 24-h period, providing a more regular supply of feed to the rumen. Feed passed through the digestive tract more quickly in Jerseys compared with Holsteins, suggesting particle breakdown and rumen outflow were faster in Jerseys, but this may also reflect the relative size of their digestive tract. Neutral detergent fiber digestibility was greater in Jerseys, despite the shorter rumen retention time, but digestibility of dry matter, organic matter, starch, and N did not differ between breeds. Utilization of digested N for tissue retention was higher at wk 5 prepartum and lower at wk 14 of lactation in Jerseys. In contrast to numerous published studies, intake capacity of Jerseys was not higher than that of Holsteins, but in the present study, cows were selected on the basis of equal expected milk energy yield per kilogram of metabolic BW. Digestibility of neutral detergent fiber and rate of digesta passage were higher in Jerseys, probably as a consequence of increased mastication per unit of feed consumed in Jerseys and their smaller size.
Resumo:
Results of a large-scale survey of resource-poor smallholder cotton farmers in South Africa over three years conclusively show that adopters of Bt cotton have benefited in terms of higher yields, lower pesticide use, less labour for pesticide application and substantially higher gross margins per hectare. These benefits were clearly related to the technology, and not to preferential adoption by farmers who were already highly efficient. The smallest producers are shown to have benefited from adoption of the Bt variety as much as, if not more than, larger producers. Moreover, evidence from hospital records suggests a link between declining pesticide poisonings and adoption of the Bt variety.
Resumo:
The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.
Resumo:
Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.
Resumo:
Estimates of the response of crops to climate change rarely quantify the uncertainty inherent in the simulation of both climate and crops. We present a crop simulation ensemble for a location in India, perturbing the response of both crop and climate under both baseline (12 720 simulations) and doubled-CO2 (171720 simulations) climates. Some simulations used parameter values representing genotypic adaptation to mean temperature change. Firstly, observed and simulated yields in the baseline climate were compared. Secondly, the response of yield to changes in mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. Thirdly, the relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes was examined. In simulations without genotypic adaptation, most of the uncertainty came from the climate model parameters. Comparison with the simulations with genotypic adaptation and with a previous study suggested that the relatively low crop parameter uncertainty derives from the observational constraints on the crop parameters used in this study. Fourthly, the simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. The results suggest that the germplasm for complete adaptation of groundnut cultivation in western India to a doubled-CO2 environment may not exist. In conjunction with analyses of germplasm and local management