87 resultados para DYNAMICAL ENSEMBLES
Resumo:
Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.
Resumo:
The paper discusses the observed and projected warming in the Caucasus region and its implications for glacier melt and runoff. A strong positive trend in summer air temperatures of 0.05 degrees C a(-1) is observed in the high-altitude areas providing for a strong glacier melt and continuous decline in glacier mass balance. A warming of 4-7 degrees C and 3-5 degrees C is projected for the summer months in 2071-2100 under the A2 and B2 emission scenarios respectively, suggesting that enhanced glacier melt can be expected. The expected changes in winter precipitation will not compensate for the summer melt and glacier retreat is likely to continue. However, a projected small increase in both winter and summer precipitation combined with the enhanced glacier melt will result in increased summer runoff in the currently glaciated region of the Caucasus (independent of whether the region is glaciated at the end of the twenty-first century) by more than 50% compared with the baseline period.
Resumo:
This paper describes a novel numerical algorithm for simulating the evolution of fine-scale conservative fields in layer-wise two-dimensional flows, the most important examples of which are the earth's atmosphere and oceans. the algorithm combines two radically different algorithms, one Lagrangian and the other Eulerian, to achieve an unexpected gain in computational efficiency. The algorithm is demonstrated for multi-layer quasi-geostrophic flow, and results are presented for a simulation of a tilted stratospheric polar vortex and of nearly-inviscid quasi-geostrophic turbulence. the turbulence results contradict previous arguments and simulation results that have suggested an ultimate two-dimensional, vertically-coherent character of the flow. Ongoing extensions of the algorithm to the generally ageostrophic flows characteristic of planetary fluid dynamics are outlined.
Resumo:
Data from the MIPAS instrument on Envisat, supplemented by meteorological analyses from ECMWF and the Met Office, are used to study the meteorological and trace-gas evolution of the stratosphere in the southern hemisphere during winter and spring 2003. A pole-centred approach is used to interpret the data in the physically meaningful context of the evolving stratospheric polar vortex. The following salient dynamical and transport features are documented and analysed: the merger of anticyclones in the stratosphere; the development of an intense, quasi-stationary anticyclone in spring; the associated top-down breakdown of the polar vortex; the systematic descent of air into the polar vortex; and the formation of a three-dimensional structure of a tracer filament on a planetary scale. The paper confirms and extends existing paradigms of the southern hemisphere vortex evolution. The quality of the MIPAS observations is seen to be generally good. though the water vapour retrievals are unrealistic above 10 hPa in the high-latitude winter.
Resumo:
Ensemble predictions are being used more frequently to model the propagation of uncertainty through complex, coupled meteorological, hydrological and coastal models, with the goal of better characterising flood risk. In this paper, we consider the issues that we judge to be important when designing and evaluating ensemble predictions, and make recommendations for the guidance of future research.
Resumo:
Uncertainties associated with the representation of various physical processes in global climate models (GCMs) mean that, when projections from GCMs are used in climate change impact studies, the uncertainty propagates through to the impact estimates. A complete treatment of this ‘climate model structural uncertainty’ is necessary so that decision-makers are presented with an uncertainty range around the impact estimates. This uncertainty is often underexplored owing to the human and computer processing time required to perform the numerous simulations. Here, we present a 189-member ensemble of global river runoff and water resource stress simulations that adequately address this uncertainty. Following several adaptations and modifications, the ensemble creation time has been reduced from 750 h on a typical single-processor personal computer to 9 h of high-throughput computing on the University of Reading Campus Grid. Here, we outline the changes that had to be made to the hydrological impacts model and to the Campus Grid, and present the main results. We show that, although there is considerable uncertainty in both the magnitude and the sign of regional runoff changes across different GCMs with climate change, there is much less uncertainty in runoff changes for regions that experience large runoff increases (e.g. the high northern latitudes and Central Asia) and large runoff decreases (e.g. the Mediterranean). Furthermore, there is consensus that the percentage of the global population at risk to water resource stress will increase with climate change.
Resumo:
Targeted observations are generally taken in regions of high baroclinicity, but often show little impact. One plausible explanation is that important dynamical information, such as upshear tilt, is not extracted from the targeted observations by the data assimilation scheme and used to correct initial condition error. This is investigated by generating pseudo targeted observations which contain a singular vector (SV) structure that is not present in the background field or routine observations, i.e. assuming that the background has an initial condition error with tilted growing structure. Experiments were performed for a single case-study with varying numbers of pseudo targeted observations. These were assimilated by the Met Office four-dimensional variational (4D-Var) data assimilation scheme, which uses a 6 h window for observations and background-error covariances calculated using the National Meteorological Centre (NMC) method. The forecasts were run using the operational Met Office Unified Model on a 24 km grid. The results presented clearly demonstrate that a 6 h window 4D-Var system is capable of extracting baroclinic information from a limited set of observations and using it to correct initial condition error. To capture the SV structure well (projection of 0.72 in total energy), 50 sondes over an area of 1×106 km2 were required. When the SV was represented by only eight sondes along an example targeting flight track covering a smaller area, the projection onto the SV structure was lower; the resulting forecast perturbations showed an SV structure with increased tilt and reduced initial energy. The total energy contained in the perturbations decreased as the SV structure was less well described by the set of observations (i.e. as fewer pseudo observations were assimilated). The assimilated perturbation had lower energy than the SV unless the pseudo observations were assimilated with the dropsonde observation errors halved from operational values. Copyright © 2010 Royal Meteorological Society
Resumo:
Climate science is coming under increasing pressure to deliver projections of future climate change at spatial scales as small as a few kilometres for use in impacts studies. But is our understanding and modelling of the climate system advanced enough to offer such predictions? Here we focus on the Atlantic–European sector, and on the effects of greenhouse gas forcing on the atmospheric and, to a lesser extent, oceanic circulations. We review the dynamical processes which shape European climate and then consider how each of these leads to uncertainty in the future climate. European climate is unique in many regards, and as such it poses a unique challenge for climate prediction. Future European climate must be considered particularly uncertain because (i) the spread between the predictions of current climate models is still considerable and (ii) Europe is particularly strongly affected by several processes which are known to be poorly represented in current models.
Resumo:
Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.
Resumo:
Almost all stages of a plant pathogen life cycle are potentially density dependent. At small scales and short time spans appropriate to a single-pathogen individual, density dependence can be extremely strong, mediated both by simple resource use, changes in the host due to defence reactions and signals between fungal individuals. In most cases, the consequences are a rise in reproductive rate as the pathogen becomes rarer, and consequently stabilisation of the population dynamics; however, at very low density reproduction may become inefficient, either because it is co-operative or because heterothallic fungi do not form sexual spores. The consequence will be historically determined distributions. On a medium scale, appropriate for example to several generations of a host plant, the factors already mentioned remain important but specialist natural enemies may also start to affect the dynamics detectably. This could in theory lead to complex (e.g. chaotic) dynamics, but in practice heterogeneity of habitat and host is likely to smooth the extreme relationships and make for more stable, though still very variable, dynamics. On longer temporal and longer spatial scales evolutionary responses by both host and pathogen are likely to become important, producing patterns which ultimately depend on the strength of interactions at smaller scales.