98 resultados para DROUGHT TOLERANCE
Resumo:
Poor glucose tolerance may be an under-researched contributory factor in the high (10% to 20%) pre-weaning mortality rate observed in pigs. Insulin resistance commences at around week 12 of gestation in the sow, although there are conflicting reports in the literature about the extent to which insulin resistance is modulated by maternal diet. The aim of the study was to determine the effects of supplementing the maternal diet with different dietary oils during either the first half or the second half of gestation on the glucose tolerance of the sow. Sows were offered the control (C: n = 5) diet as pellets or the C diet plus 10% extra energy (h = 16 per group) derived from either. (i) extra pellets; (ii) palm oil; (iii) olive oil; (iv) sunflower oil; or (v) fish oil. Experimental diets were fed during either the first (G1) or second (G2) half of gestation. A glucose tolerance test (GTT) was conducted on day 108 of gestation by administering 0.5g/kg glucose i.v. Blood samples were taken every 5 to 10 min for 90 min post administration. The change in body weight and backfat thickness during gestation was similar but both type and timing of dietary supplementation influenced litter size and weight. With the exception of the sunflower oil group, supplementing the maternal diet in G1 resulted in larger and heavier litters, particularly in mothers offered palm oil. Basal blood glucose concentrations tended to be more elevated in G1 than G2 groups, whilst plasma insulin concentrations were similar Following a GTT, the adjusted area under the curve was greater in G1 compared to G2 sows, despite no differences in glucose clearance. Maternal diet appeared to influence the relationship between glucose curve characteristics following a GTT and litter outcome. In conclusion, the degree of insulin sensitivity can be altered by both the period during which maternal nutritional supplementation is offered and the fatty acid profile of the diet.
Resumo:
Women who were themselves small-for-gestational age (SGA) are at a greater risk of adulthood diseases such as non-insulin-dependent diabetes mellitus (NIDDM), and twice at risk of having an SGA baby themselves. The aim of this study was to examine the intergenerational pig. Low (L) and normal (N) birth weight female piglets were followed throughout their first pregnancy (generation 1 (0)). After they had given birth, the growth and development of the lightest (I) and heaviest (n) female piglet from each litter were monitored until approximately 5 months of age (generation 2 (G2)). A glucose tolerance test (GTT) was conducted on G1 pig at similar to 6 months of age and again during late pregnancy; a GTT was also conducted on G2 pigs at similar to 4 months of age. G1 L offspring exhibited impaired glucose metabolism in later life compared to their G1 N sibling but in the next generation a similar scenario was only observed between I and n offspring born to G1 L mothers. Despite G1 L mothers showing greater glucose intolerance in late pregnancy and a decreased litter size, average piglet birth weight was reduced and there was also a large variation in litter weight; this suggests that they were, to some extent, prioritising their nutrient intake towards themselves rather than promoting their reproductive performance. There were numerous relationships between body shape at birth and glucose curve characteristics in later life, which can, to some extent, be used to predict neonatal outcome. In conclusion, intergenerational effects are partly seen in the pig. It is likely that some of the intergenerational influences may be masked due to the pig being a litter-bearing species.
Resumo:
Tolerance to high soil and air temperature during the reproductive phase is an important component of adaptation to and and semi-arid cropping environments in groundnut. Between 10 and 22 genotypes were screened for tolerance to high air and soil temperature in controlled environments. To assess tolerance to high soil temperature, 10 genotypes were grown from start of podding to harvest at ambient (28 degrees) and high (38 degreesC) soil temperatures, and crop growth rate (CGR), pod growth rate (PGR) and partitioning (ratio PGR:CGR) measured. To assess tolerance to high air temperature during two key stages-microsporogenesis (3-6 days before flowering, DBF) and flowering, fruit-set was measured in two experiments. In the first experiment, 12 genotypes were exposed to short (3-6 days) episodes of high (38 degreesC) day air temperature at 6 DBF and at flowering. In the second experiment, 22 genotypes were exposed to 40 degreesC day air temperature for I day at 6 DBF, 3 DBF or at flowering. Cellular membrane thermostability (relative injury, RI) was also measured in these 22 genotypes. There was considerable variation among genotypes in response to high temperature, whether assessed by growth rates, fruit-set or RI. Pod weight at high soil temperature was associated with variation in CGR rather than partitioning. Flowering was more sensitive to high air temperature than microsporogenesis. Genotypes tolerant to high air temperature at microsporogenesis were not necessarily tolerant at flowering, and nor was tolerance correlated with RI. Six genotypes (796, 55-437, ICG 1236, ICGV 86021, lCGV 87281 and ICGV 92121) were identified as heat tolerant based on their performance in all tests. These experiments have shown that groundnut genotypes can be easily screened for reproductive tolerance to high air and soil temperature and that several sources of heat tolerance are available in groundnut germplasm. (C) 2003 Elsevier Science B.V. All rights reserved.
Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger
Resumo:
Soil moisture and soil temperature affect pre-harvest infection with Aspergillus flavus and production of aflatoxin. The objectives of our field research in Niger, West Africa, were to: (i) examine the effects of sowing date and irrigation treatments on pod yield, infection with A. flavus and aflatoxin concentration; and (ii) to quantify relations between infection, aflatoxin concentration and soil moisture stress. Seed of an aflatoxin susceptible peanut cv. JL24 was sown at two to four different sowing dates under four irrigation treatments (rainfed and irrigation at 7, 14 and 21 days intervals) between 1991 and 1994, giving 40 different 'environments'. Average air and soil temperatures of 28-34 degrees C were favourable for aflatoxin contamination. CROPGRO-peanut model was used to simulate the occurrence of moisture stress. The model was able to simulate yields of peanut well over the 40 environments (r(2) = 0.67). In general, early sowing produced greater pod yields, as well as less infection and lower aflatoxin concentration. There were negative linear relations between infection (r(2) = 0.62) and the average simulated fraction of extractable soil water (FESW) between flowering and harvest, and between aflatoxin concentration (r(2) = 0.54) and FESW in the last 25 days of pod-filling. This field study confirms that infection and aflatoxin concentration in peanut can be related to the occurrence of soil moisture stress during pod-filling when soil temperatures are near optimal for A. flavus. These relations could form the basis of a decision-support system to predict the risk of aflatoxin contamination in peanuts in similar environments. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
1. The growth (increase in height and leaf number) of four grass species was reduced by a -0.5 MPa drought stress, but the performance of an associated herbivore, Rhopalosiphum padi (L.), was not affected consistently. The intrinsic rate of increase of R. padi was reduced by drought stress on three grass species, including Dactylis glomerata (L.), but was unaffected on Arrhenatherum elatius (L.). Therefore, there is no general relationship in the effect of plant drought on an insect herbivore, even among closely related host plant species. 2. Drought stress increased the quality of plant phloem sap, as indicated by increased sieve element osmotic pressure and essential amino acid concentrations. Thus, diet quality could not account for the reduced performance of R. padi under drought stress. The concentration of essential amino acids in the phloem of well-watered A. elatius was, however, lower than that of well-watered D. glomerata, correlating with the decreased performance of aphids on well-watered A. elatius. 3. There were no differences in aphid feeding duration between watering treatments or plant species but sap ingestion rates were reduced significantly under drought stress. 4. Using the measure of dietary amino acid concentrations and the estimate of sap ingestion, the essential amino acid flux through aphids was calculated. Compared with the flux through aphids feeding on well-watered D. glomerata, there was a reduction in aphids feeding on drought-stressed D. glomerata and drought-stressed A. elatius due to lower sap ingestion rates. The flux through aphids on well-watered A. elatius was also reduced due to low phloem essential amino acid concentrations. Thus, the performance of an aphid is correlated with the availability and accessibility of essential amino acids.
Resumo:
Seed set of rice (Oryza sativa L.) is highly sensitive to short episodes of high temperature at anthesis events that are likely to be more frequent in future climates. Breeding for tolerance is therefore an essential component of adaptation to climate variability and change. Experiments were conducted in 2003 and 2004 at optimum (30 degrees C daytime) and high (35 and 38 degrees C) air temperature using parents of some prominent mapping populations (i) to determine whether there were differences in the daily flowering pattern and hence a potential heat avoidance mechanism, and (ii) to identify rice genotypes having true heat tolerance during anthesis, that is, high seed set in spikelets exposed to high temperature. Rice cultivar CG14 (O. glaberrima) reached peak anthesis earlier in the morning (1.5 h after dawn) under both control (30 degrees C) and high (38 degrees C) temperature conditions than O. sativa genotypes (>= 3 h after dawn). Exposure to high temperature (centered on the time of peak anthesis) for 6 h reduced spikelet fertility more than exposure for 2 h, and fertility was lower at 38 degrees C than at 35 degrees C. Genotypic ranking for spikelet fertility at 35 and 38 degrees C was highly correlated in both 2003 and 2004. Fertility was also highly correlated across years, suggesting a consistent and reproducible response of spikelet fertility to temperature. The check cultivar N22 was the most heat tolerant genotype (64-86% fertility at 38 degrees C) and cultivars Azucena and Moroberekan the most susceptible (<8%).
Resumo:
The ability to germinate, tolerate desiccation and survive in air-dry storage was investigated during early seed development in planta and subsequent ex planta maturation of sumauma (Ceiba pentandra). Immature fruits were collected on three different dates (i.e. from about 5 days before until 7 days after mass maturity). Immature fresh seeds were not able to germinate. Fruits or seeds were subjected immediately after each collection to three different drying treatments with progressively slower rates of dessication: (i) seeds were extracted from the fruits and dried immediately; (ii) fruits were dried in a thin layer; (iii) fruits were dried in a tied polyethylene bag (with 10 holes of 1cm diameter). Drying was in a room maintained at 25 degrees C +/- 3 degrees C and 65%+/- 5% r.h. For treatment (i) the seeds were dried for 6 days in order to reduce moisture content to around 13% ( +/- 2%) moisture content. For treatments (ii) and (iii) the fruits were subjected to different periods of drying depending upon collection date. The results of these post-collection treatments showed generally that the more immature the seeds the slower the rate of drying that is required to improve ability to germinate, ability to tolerate desiccation and potential longevity, but at the third harvest, 7 days after mass maturity, the intermediate drying rate treatment was the most beneficial. Thus post fruit collection treatments can be modified depending upon the stage of seed development in order to provide good to high quality seeds of sumauma when collection has to be made at a site with difficult access at less than ideal times. The results are relevant to seed collection practices for both forestry and ex situ plant biodiversity conservation.
Resumo:
In the hot and dry conditions in which seeds of the tree legume Peltophorum pterocarpum develop and mature in Vietnam, seed moisture content declined rapidly on the mother plant from 87% at 42 d after flowering (DAF) to 15% at 70 DAF. Dry weight of the pods attained a maximum value at about 42 DAF, but seed mass maturity (i.e. the end of the seed-filling phase) occurred at about 62 DAF, at which time seed moisture content was about 45-48%. The onset of the ability of freshly collected seeds to germinate (in 63-d tests at 28-34degreesC) occurred at 42 DAF, i.e. about 20 d before mass maturity. Full germination (98%) was attained at 70 DAF, i.e. at about 8 d after mass maturity. Thereafter, germination of fresh seeds declined, due to the imposition of a hard seed coat. Tolerance of desiccation to 10% moisture content was first detected at 56 DAF and was complete within the seed population by 84 DAF, i.e. about 22 d after mass maturity. Hardseededness began to be induced when seeds were dried to about 15% moisture content and below, with a negative logarithmic relation between hardseededness and moisture content below this value.
Resumo:
1. The impact of climate change on phytophages is difficult to predict, due in part to variation between species in their responses to factors such as drought stress. Here, the hypothesis that several species within the leaf-mining feeding guild will respond in a consistent way to changes in rainfall patterns is tested, using a manipulative field experiment. 2. Summer drought, enhanced summer rainfall, and control treatments were imposed on a calcareous grassland community, and the responses of five leaf-mining species were assessed. 3. One leaf-mining species was more abundant under enhanced rainfall, one was more abundant under drought, and the other three species showed no consistent response to the rainfall treatments. Higher parasitism levels under drought may partly explain the response of one species (Stephensia brunnichella) to the treatments. 4. These results show that generalisations relating to drought stress impacts cannot be drawn at the feeding guild level for leaf-mining insects.
Resumo:
Root herbivores can have a positive or negative effect on the abundance and/or performance of foliar phytophages. In addition, abiotic factors such as drought can either strengthen or weaken this effect, depending on the system under investigation. One explanation for these varying responses lies in differences in the physiological response of host plants to drought and root herbivores. Here, the impacts of root phytophages on a leaf-mining species feeding on annual and perennial plant species (four Sonchus species) were compared. The responses of plants and leaf-miners to dtought and root herbivore treatments were not related to whether the host plant was an annual or perennial. However, where root feeders did affect foliar phytophage performance, this occurred only under a drought treatment, demonstrating the potential for climatic change to alter the outcome of plant-mediated interactions. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.
Resumo:
Summer droughts are predicted to increase in severity and frequency in the United Kingdom, due to climate change. Few studies have addressed the impacts of drought on interactions between species, and the majority have focussed on increases in CO2 concentration and changes in temperature. Here, the effect of experimental summer drought on the strength of the plant-mediated interaction between leaf-mining Stephensia brunnichella larvae and root-chewing Agriotes larvae was investigated. Agriotes larvae reduced the abundance and performance of S. brunnichella feeding on a mutual host plant, Clinopodium vulgare, as well as the rate of parasitism of the leaf-miner. The interaction did not, however, occur on plants subjected to a severe drought treatment, which were reduced in size. Changes to summer rainfall, due to climate change, may therefore reduce the occurrence of plant-mediated interactions between insect herbivores.
Resumo:
Identifying factors which allow the evolution and persistence of cooperative interactions between species is a fundamental issue in evolutionary ecology. Various hypotheses have been suggested which generally focus on mechanisms that allow cooperative genotypes in different species to maintain interactions over space and time. Here, we emphasise the fact that even within mutualisms (interactions with net positive fitness effects for both partners), there may still be inherent costs, such as the occasional predation by ants upon aphids. Individuals engaged in mutualisms benefit from minimising these costs as long as it is not at the expense of breaking the interspecific interaction, which offers a net positive benefit. The most common and obvious defence traits to minimise interspecific interaction costs are resistance traits, which act to reduce encounter rate between two organisms. Tolerance traits, in contrast, minimise fitness costs to the actor, but without reducing encounter rate. Given that, by definition, it is beneficial to remain in mutualistic interactions, the only viable traits to minimise costs are tolerance-based 'defence' strategies. Thus, we propose that tolerance traits are an important factor promoting stability in mutualisms. Furthermore, because resistance traits tend to propagate coevolutionary arms races between antagonists, whilst tolerance traits do not, we also suggest that tolerance-based defence strategies may be important in facilitating the transition from antagonistic interactions into mutualisms. For example, the mutualism between ants and aphids has been suggested to have evolved from parasitism. We describe how phenotypic plasticity in honeydew production may be a tolerance trait that has prevented escalation into an antagonistic arms race and instead led to mutualistic coevolution.