39 resultados para DICHROISM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we report the formation of complexes by self-assembly of bovine serum albumin (BSA) with a poly(ethylene glycol) lipid conjugate (PEG(2000)-PE) in phosphate saline buffer solution (pH 7.4). Three different sets of samples have been studied. The BSA concentration remained fixed (1, 0.01, or 0.001 wt % BSA) within each set of samples, while the PEG(2000)-PE concentration was varied. Dynamic light scattering (DLS), rheology, and small-angle X-ray scattering (SAXS) were used to study samples with 1 wt % BSA. DLS showed that BSA/PEG(2000)-PE aggregates have a size intermediate between a BSA monomer and a PEG(2000)-PE micelle. Rheology suggested that BSA/PEG(2000)-PE complexes might be surrounded by a relatively compact PEG-lipid shell, while SAXS results showed that depletion forces do not take an important role in the stabilization of the complexes. Samples containing 0.01 wt % BSA were studied by circular dichroism (CD) and ultraviolet fluorescence spectroscopy (UV). UV results showed that at low concentrations of PEG-lipid, PEG(2000)-PE binds to tryptophan (Trp) groups in BSA, while at high concentrations of PEG-lipid the Trp groups are exposed to water. CD results showed that changes in Trp environment take place with a minimal variation of the BSA secondary structure elements. Finally, samples containing 0.001 wt % BSA were studied by zeta-potential experiments. Results showed that steric interactions might play an important role in the stabilization of the BSA/PEG(2000)-PE complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alignment of model amyloid peptide YYKLVFFC is investigated in bulk and at a solid surface using a range of spectroscopic methods employing polarized radiation. The peptide is based on a core sequence of the amyloid beta (A beta) peptide, KLVFF. The attached tyrosine and cysteine units are exploited to yield information on alignment and possible formation of disulfide or dityrosine links. Polarized Raman spectroscopy on aligned stalks provides information on tyrosine orientation, which complements data from linear dichroism (LD) on aqueous solutions subjected to shear in a Couette cell. LD provides a detailed picture of alignment of peptide strands and aromatic residues and was also used to probe the kinetics of self-assembly. This suggests initial association of phenylalanine residues, followed by subsequent registry of strands and orientation of tyrosine residues. X-ray diffraction (XRD) data from aligned stalks is used to extract orientational order parameters from the 0.48 nm reflection in the cross-beta pattern, from which an orientational distribution function is obtained. X-ray diffraction on solutions subject to capillary flow confirmed orientation in situ at the level of the cross-beta pattern. The information on fibril and tyrosine orientation from polarized Raman spectroscopy is compared with results from NEXAFS experiments on samples prepared as films on silicon. This indicates fibrils are aligned parallel to the surface, with phenyl ring normals perpendicular to the surface. Possible disulfide bridging leading to peptide dimer formation was excluded by Raman spectroscopy, whereas dityrosine formation was probed by fluorescence experiments and was found not to occur except under alkaline conditions. Congo red binding was found not to influence the cross-beta XRD pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the complex formation of a peptide betaAbetaAKLVFF, previously developed by our group, with Abeta(1–42) in aqueous solution. Circular dichroism spectroscopy is used to probe the interactions between betaAbetaAKLVFF and Abeta(1–42), and to study the secondary structure of the species in solution. Thioflavin T fluorescence spectroscopy shows that the population of fibers is higher in betaAbetaAKLVFF/Abeta(1–42) mixtures compared to pure Abeta(1–42) solutions. TEM and cryo-TEM demonstrate that co-incubation of betaAbetaAKLVFF with Abeta(1–42) causes the formation of extended dense networks of branched fibrils, very different from the straight fibrils observed for Abeta(1–42) alone. Neurotoxicity assays show that although betaAbetaAKLVFF alters the fibrillization of Abeta(1–42), it does not decrease the neurotoxicity, which suggests that toxic oligomeric Abeta(1–42) species are still present in the betaAbetaAKLVFF/Abeta(1–42) mixtures. Our results show that our designed peptide binds to Abeta(1–42) and changes the amyloid fibril morphology. This is shown to not necessarily translate into reduced toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of peptide YYKLVFFC based on a fragment of the amyloid beta (A) peptide, A beta 16-20, KLVFF has been studied in aqueous solution. The peptide is designed with multiple functional residues to examine the interplay between aromatic interactions and charge on the self-assembly, as well as specific transformations such as the pH-induced phenol-phenolate transition of the tyrosine residue. Circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopies are used to investigate the conditions for beta-sheet self-assembly and the role of aromatic interactions in the CD spectrum as a function of pH and concentration. The formation of well-defined fibrils at pH 4.7 is confirmed by cryo-TEM (transmission electron microscope) and negative stain TEM. The morphology changes at higher pH, and aggregates of short twisted fibrils are observed at pH 11. Polarized optical microscopy shows birefringence at a low concentration (1 wt.-%) of YYKLVFFC in aqueous solution, and small-angle X-ray scattering was used to probe nematic phase formation in more detail. A pH-induced transition from nematic to isotropic phases is observed on increasing pH that appears to be correlated to a reduction in aggregate anisotropy upon increasing pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide A beta 16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and Molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations, The Solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics Simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one being linear and twisted and the other twisted in two directions. These structures Were used to simulate Circular dichroism spectra. The roles of aromatic stacking interactions and charge transfer effects were also examined. Simulated spectra were found to be similar to those observed experimentally.(in water or methanol) which show a maximum at 215 or 218 nm due to pi-pi* interactions, when allowance is made for a 15-18 nm red-shift that may be due to light scattering effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of a fragment of the amyloid beta peptide that has been shown to be critical in amyloid fibrillization has been studied in aqueous solution. There are conflicting reports in the literature on the fibrillization of A beta (16-20), i.e., KLVFF, and our results shed light on this. In dilute solution, self-assembly of NH2-KLVFF-COOH is strongly influenced by aromatic interactions between phenylalanine units, as revealed by UV spectroscopy and circular dichroism. Fourier transform infrared (FTIR) spectroscopy reveals beta-sheet features in spectra taken for more concentrated solutions and also dried films. X-ray diffraction and cryo-transmission electron microscopy (cryo-TEM) provide further support for beta-sheet amyloid fibril formation. A comparison of cryo-TEM images with those from conventional dried and negatively stained TEM specimens highlights the pronounced effects of sample preparation on the morphology. A comparison of FTIR data for samples in solution and dried samples also highlights the strong effect of drying on the self-assembled structure. In more concentrated phosphate-buffered saline (PBS) solution, gelation of NH2-KLVFF-COOH is observed. This is believed to be caused by screening of the electrostatic charge on the peptide, which enables beta sheets to aggregate into a fibrillar gel network. The rheology of the hydrogel is probed, and the structure is investigated by light scattering and small-angle X-ray scattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of a hydrophobically modified fragment of the amyloid beta(A beta) peptide has been studied in methanol. The peptide FFKLVFF is based on A beta(16-20) extended at the N terminus by two phenylalanine residues. The formation of amyloid-type fibrils is confirmed by Congo Red staining, thioflavin T fluorescence and circular dichroism experiments. FTIR points to the formation of beta-sheet structures in solution and in dried films and suggests that aggregation occurs at low concentration and is not strongly affected by further increase in concentration, i.e. the peptide is a strong fibril-former in methanol. UV fluorescence experiments on unstained peptide and CD point to the importance of aromatic interactions between phenylalanine groups in driving aggregation into beta-sheets. The CD spectrum differs from that usually observed for beta-sheet assemblies formed by larger peptides or proteins and this is discussed for solutions in methanol and also trifluoroethanol. The fibril structure is imaged by transmission electron microscopy and scanning electron microscopy on dried samples and is confirmed by small-angle X-ray scattering experiments in solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signal peptide of 34 amino acid residues and a C-terminal 'Peptidase_M75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr_3370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M(W) 27,772Da). Circular dichroism spectroscopy of EfeM indicated a mainly alpha-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of tripeptides based on the RGD cell adhesion motif is investigated. Two tripeptides containing the Fmoc [N-(fluorenyl)-9-methoxycarbonyl] aromatic unit were synthesized, Fmoc-RGD and a control peptide containing a scrambled sequence, Fmoc-GRD. The Fmoc is used to control selfassembly via aromatic stacking interactions. The self-assembly and hydrogelation properties of the two Fmoc-tripeptides are compared. Both form well defined amyloid fibrils (as shown by cryo-TEM and SAXS) with b-sheet features in their circular dichroism and FTIR spectra. Both peptides form selfsupporting hydrogels, the dynamic shear modulus of which was measured. Preliminary cell culture experiments reveal that Fmoc-RGD can be used as a support for bovine fibroblasts, but not Fmoc- GRD, consistent with the incorporation of the cell adhesion motif in the former peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of charge and aromatic stacking interactions on the self-assembly of a series of four model amyloid peptides has been examined. The four model peptides are based on the KLVFF motif from the amyloid Beta peptide, ABeta(16-20) extended at the N terminus with two Beta-alanine residues. We have studied NH2-BetaABetaAKLVFF-COOH (FF), NH2-BetaABetaAKLVFCOOH (F), CH3CONH-BetaABetaAKLVFF-CONH2 (CapF), and CH3CONH-BetaABetaAKLVFFCONH2 (CapFF). The former two are uncapped (net charge plus 2) and differ by one hydrophobic phenylalanine residue; the latter two are the analogous capped peptides (net charge plus 1). The self-assembly characteristics of these peptides are remarkably different and strongly dependent on concentration. NMR shows a shift from carboxylate to carboxylic acid forms upon increasing concentration. Saturation transfer measurements of solvent molecules indicate selective involvement of phenylalanine residues in driving the self-assembly process of CapFF due presumably to the effect of aromatic stacking interactions. FTIR spectroscopy reveals beta-sheet features for the two peptides containing two phenylalanine residues but not the single phenylalanine residue, pointing again to the driving force for self-assembly. Circular dichroism (CD) in dilute solution reveals the polyproline II conformation, except for F which is disordered. We discuss the relationship of this observation to the significant pH shift observed for this peptide when compared the calculated value. Atomic force microscopy and cryogenic-TEM reveals the formation of twisted fibrils for CapFF, as previously also observed for FF. The influence of salt on the self-assembly of the model beta-sheet forming capped peptide CapFF was investigated by FTIR. Cryo-TEM reveals that the extent of twisting decreases with increased salt concentration, leading to the formation of flat ribbon structures. These results highlight the important role of aggregation-induced pKa shifts in the self-assembly of model beta-sheet peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembly in aqueous solution has been investigated for two Fmoc [Fmoc ¼ N-(fluorenyl)-9-methoxycarbonyl] tetrapeptides comprising the RGDS cell adhesion motif from fibronectin or the scrambled sequence GRDS. The hydrophobic Fmoc unit confers amphiphilicity on the molecules, and introduces aromatic stacking interactions. Circular dichroism and FTIR spectroscopy show that the self-assembly of both peptides at low concentration is dominated by interactions among Fmoc units, although Fmoc-GRDS shows b-sheet features, at lower concentration than Fmoc-RGDS. Fibre X-ray diffraction indicates b-sheet formation by both peptides at sufficiently high concentration. Strong alignment effects are revealed by linear dichroism experiments for Fmoc-GRDS. Cryo-TEM and smallangle X-ray scattering (SAXS) reveal that both samples form fibrils with a diameter of approximately 10 nm. Both Fmoc-tetrapeptides form self-supporting hydrogels at sufficiently high concentration. Dynamic shear rheometry enabled measurements of the moduli for the Fmoc-GRDS hydrogel, however syneresis was observed for the Fmoc-RGDS hydrogel which was significantly less stable to shear. Molecular dynamics computer simulations were carried out considering parallel and antiparallel b-sheet configurations of systems containing 7 and 21 molecules of Fmoc-RGDS or Fmoc-GRDS, the results being analyzed in terms of both intermolecular structural parameters and energy contributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of side chain liquid crystal copolymers have been prepared using mesogenic and non-mesogenic units. It is found that high levels of the non-mesogenic moieties may be introduced without completely disrupting the organization of the liquid crystal phase. Incorporation of this comonomer causes a marked reduction in the glass transition temperature (Tg), presumably as a result of enhanced backbone mobility and a corresponding lowering of the nematic transition temperature, thereby restricting the temperature range for stability of the liquid crystal phase. The effect of the interactions between the various components of these side-chain polymers on their electro-optic responses is described. Infrared (i.r.) dichroism measurements have been made to determine the order parameters of the liquid crystalline side-chain polymers. By identifying a certain band (CN stretching) in the i.r. absorption spectrum, the order parameter of the mesogenic groups can be obtained. The temperature and composition dependence of the observed order parameter are related to the liquid crystal phase transitions and to the electro-optic response. It is found that the introduction of the non-mesogenic units into the polymer chain lowers the threshold voltage of the electro-optic response over and above that due to the reduction in the order parameter. The dynamic electro-optic responses are dominated by the temperature-dependent viscosity and evidence is presented for relaxation processes involving the polymer backbone which are on a time scale greater than that for the mesogenic side-chain units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of methacrylate-based side-chain liquid crystal polymers has been prepared with a range of molecular weights. For the high molecular weight polymers a smectic phase is observed with a very narrow nematic range; however, for low molecular weight polymers only the nematic phase is observed. A marked reduction in the glass transition temperature, TSN and TNI is observed with a reduction in the molecular weight. The orientational order parameters for these polymers in the liquid crystal phase have been determined using infra-red dichroism. It is found that the higher the molecular weight of the polymer, the greater is the threshold voltage of the electro-optic response and the lower the order parameter. The increase in the threshold voltage with increasing molecular weight may be related to the intrinsic curvature elasticity and hence to the coupling between the mesogenic units and the polymer backbone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the processes involved in writing real-time holographic gratings in a photorefractive polymer (PRP) that incorporates an azo-dye. In such systems there may be gratings due to mechanisms associated with trans–cis isomerization (angular hole burning (AHB) and/or angular redistribution), which appear in addition to those arising from the photorefractive (PR) effect. The work presented here helps to understand the interactions which may occur between these different gratings. The formation of local gratings due to mechanisms associated with photoisomerization is studied, in a new PRP based on the photoconductor poly(N-vinylcarbazole):2, 4, 7-trinitro-9-fluorenone, plasticized with N-ethylcarbazole. The polymer includes the azo-dye 4-nitro-4'-pentyloxy-azobenzene and we observe both PR and photoisomerization gratings. The gratings are shown to be both polarization-sensitive and reversible. The presence of the photoisomerization gratings (which diffract almost as strongly as the PR gratings) significantly affects the field-dependent diffractive behaviour of the composite. A measurement of the lifetime of the cis state is made (τcis = 38 s) using photoinduced dichroism. This is close to the decay time constant of the local gratings (τdecay = 42 s), and it is suggested that the local grating mechanism is AHB of the azo-dye. This is the first time (to the knowledge of the authors) that a local grating due to AHB has been demonstrated in a PRP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strategy is presented that exploits the ability of synthetic polymers of different nature to disturb the strong selfassembly capabilities of amyloid based β-sheet forming peptides. Following a convergent approach, the peptides of interest were synthesized via solid-phase peptide synthesis (SPPS) and the polymers via reversible addition−fragmentation chain transfer (RAFT) polymerization, followed by a copper(I) catalyzed azide− alkyne cycloaddition (CuAAC) to generate the desired peptide− polymer conjugates. This study focuses on a modified version of the core sequence of the β-amyloid peptide (Aβ), Aβ(16−20) (KLVFF). The influence of attaching short poly(Nisopropylacrylamide) and poly(hydroxyethylacrylate) to the peptide sequences on the self-assembly properties of the hybrid materials were studied via infrared spectroscopy, TEM, circular dichroism and SAXS. The findings indicate that attaching these polymers disturbs the strong self-assembly properties of the biomolecules to a certain degree and permits to influence the aggregation of the peptides based on their β-sheets forming abilities. This study presents an innovative route toward targeted and controlled assembly of amyloid-like fibers to drive the formation of polymeric nanomaterials.