17 resultados para DIASTEREOSELECTIVE TOTAL-SYNTHESIS
Resumo:
[1] An eddy-permitting ¼° global ocean reanalysis based on the Operational Met Office FOAM data assimilation system has been run for 1989–2010 forced by ERA-Interim meteorology. Freshwater and heat transports are compared with published estimates globally and in each basin, with special focus on the Atlantic. The meridional transports agree with observations within errors at most locations, but where eddies are active the transports by the mean flow are nearly always in better agreement than the total transports. Eddy transports are down gradient and are enhanced relative to a free run. They may oppose or reinforce mean transports and provide 40–50% of the total transport near midlatitude fronts, where eddies with time scales <1 month provide up to 15%. Basin-scale freshwater convergences are calculated with the Arctic/Atlantic, Indian, and Pacific oceans north of 32°S, all implying net evaporation of 0.33 ± 0.04 Sv, 0.65 ± 0.07 Sv, and 0.09 ± 0.04 Sv, respectively, within the uncertainty of observations in the Atlantic and Pacific. The Indian is more evaporative and the Southern Ocean has more precipitation (1.07 Sv). Air-sea fluxes are modified by assimilation influencing turbulent heat fluxes and evaporation. Generally, surface and assimilation fluxes together match the meridional transports, indicating that the reanalysis is close to a steady state. Atlantic overturning and gyre transports are assessed with overturning freshwater transports southward at all latitudes. At 26°N eddy transports are negligible, overturning transport is 0.67 ± 0.19 Sv southward and gyre transport is 0.44 ± 0.17 Sv northward, with divergence between 26°N and the Bering Strait of 0.13 ± 0.23 Sv over 2004–2010.
Resumo:
The "Vertical structure and physical processes of the Madden-Julian oscillation (MJO)" project comprises three experiments, designed to evaluate comprehensively the heating, moistening and momentum associated with tropical convection in general circulation models (GCMs). We consider here only those GCMs that performed all experiments. Some models display relatively higher or lower MJO fidelity in both initialized hindcasts and climate simulations, while others show considerable variations in fidelity between experiments. Fidelity in hindcasts and climate simulations are not meaningfully correlated. The analysis of each experiment led to the development of process-oriented diagnostics, some of which distinguished between GCMs with higher or lower fidelity in that experiment. We select the most discriminating diagnostics and apply them to data from all experiments, where possible, to determine if correlations with MJO fidelity hold across scales and GCM states. While normalized gross moist stability had a small but statistically significant correlation with MJO fidelity in climate simulations, we find no link with fidelity in medium-range hindcasts. Similarly, there is no association between timestep-to-timestep rainfall variability, identified from short hindcasts, and fidelity in medium-range hindcasts or climate simulations. Two metrics that relate precipitation to free-tropospheric moisture--the relative humidity for extreme daily precipitation, and variations in the height and amplitude of moistening with rain rate--successfully distinguish between higher- and lower-fidelity GCMs in hindcasts and climate simulations. To improve the MJO, developers should focus on relationships between convection and both total moisture and its rate of change. We conclude by offering recommendations for further experiments.