24 resultados para D-optimal design
Resumo:
We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.
Resumo:
Globalization, either directly or indirectly (e.g. through structural adjustment reforms), has called for profound changes in the previously existing institutional order. Some changes adversely impacted the production and market environment of many coffee producers in developing countries resulting in more risky and less remunerative coffee transactions. This paper focuses on customization of a tropical commodity, fair-trade coffee, as an approach to mitigating the effects of worsened market conditions for small-scale coffee producers in less developed countries. fair-trade labeling is viewed as a form of “de-commodification” of coffee through product differentiation on ethical grounds. This is significant not only as a solution to the market failure caused by pervasive information asymmetries along the supply chain, but also as a means of revitalizing the agricultural-commodity-based trade of less developed countries (LDCs) that has been languishing under globalization. More specifically, fair-trade is an example of how the same strategy adopted by developed countries’ producers/ processors (i.e. the sequence product differentiation - institutional certification - advertisement) can be used by LDC producers to increase the reputation content of their outputs by transforming them from mere commodities into “decommodified” (i.e. customized and more reputed) goods. The resulting segmentation of the world coffee market makes possible to meet the demand by consumers with preference for this “(ethically) customized” coffee and to transfer a share of the accruing economic rents backward to the Fair-trade coffee producers in LDCs. It should however be stressed that this outcome cannot be taken for granted since investments are needed to promote the required institutional innovations. In Italy FTC is a niche market with very few private brands selling this product. However, an increase of FTC market share could be a big commercial opportunity for farmers in LDCs and other economic agents involved along the international coffee chain. Hence, this research explores consumers’ knowledge of labels promoting quality products, consumption coffee habits, brand loyalty, willingness to pay and market segmentation according to the heterogeneity of preferences for coffee products. The latter was assessed developing a D-efficient design where stimuli refinement was tested during two focus groups.
Resumo:
In the global construction context, the best value or most economically advantageous tender is becoming a widespread approach for contractor selection, as an alternative to other traditional awarding criteria such as the lowest price. In these multi-attribute tenders, the owner or auctioneer solicits proposals containing both a price bid and additional technical features. Once the proposals are received, each bidder’s price bid is given an economic score according to a scoring rule, generally called an economic scoring formula (ESF) and a technical score according to pre-specified criteria. Eventually, the contract is awarded to the bidder with the highest weighted overall score (economic + technical). However, economic scoring formula selection by auctioneers is invariably and paradoxically a highly intuitive process in practice, involving few theoretical or empirical considerations, despite having been considered traditionally and mistakenly as objective, due to its mathematical nature. This paper provides a taxonomic classification of a wide variety of ESFs and abnormally low bids criteria (ALBC) gathered in several countries with different tendering approaches. Practical implications concern the optimal design of price scoring rules in construction contract tenders, as well as future analyses of the effects of the ESF and ALBC on competitive bidding behaviour.
Resumo:
The frequency responses of two 50 Hz and one 400 Hz induction machines have been measured experimentally over a frequency range of 1 kHz to 400 kHz. This study has shown that the stator impedances of the machines behave in a similar manner to a parallel resonant circuit, and hence have a resonant point at which the Input impedance of the machine is at a maximum. This maximum impedance point was found experimentally to be as low as 33 kHz, which is well within the switching frequency ranges of modern inverter drives. This paper investigates the possibility of exploiting the maximum impedance point of the machine, by taking it into consideration when designing an inverter, in order to minimize ripple currents due to the switching frequency. Minimization of the ripple currents would reduce torque pulsation and losses, increasing overall performance. A modified machine model was developed to take into account the resonant point, and this model was then simulated with an inverter to demonstrate the possible advantages of matching the inverter switching frequency to the resonant point. Finally, in order to experimentally verify the simulated results, a real inverter with a variable switching frequency was used to drive an induction machine. Experimental results are presented.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.
Resumo:
A technique is derived for solving a non-linear optimal control problem by iterating on a sequence of simplified problems in linear quadratic form. The technique is designed to achieve the correct solution of the original non-linear optimal control problem in spite of these simplifications. A mixed approach with a discrete performance index and continuous state variable system description is used as the basis of the design, and it is shown how the global problem can be decomposed into local sub-system problems and a co-ordinator within a hierarchical framework. An analysis of the optimality and convergence properties of the algorithm is presented and the effectiveness of the technique is demonstrated using a simulation example with a non-separable performance index.