64 resultados para Cyclone tracks
Resumo:
Synoptic activity over the Northern Hemisphere is evaluated in ensembles of ECHAM5/MPI-OM1 simulations for recent climate conditions (20C) and for three climate scenarios (following SRES A1B, A2, B1). A close agreement is found between the simulations for present day climate and the respective results from reanalysis. Significant changes in the winter mid-tropospheric storm tracks are detected in all three scenario simulations. Ensemble mean climate signals are rather similar, with particularly large activity increases downstream of the Atlantic storm track over Western Europe. The magnitude of this signal is largely dependent on the imposed change in forcing. However, differences between individual ensemble members may be large. With respect to the surface cyclones, the scenario runs produce a reduction in cyclonic track density over the mid-latitudes, even in the areas with increasing mid-tropospheric activity. The largest decrease in track densities occurs at subtropical latitudes, e.g., over the Mediterranean Basin. An increase of cyclone intensities is detected for limited areas (e.g., near Great Britain and Aleutian Isles) for the A1B and A2 experiments. The changes in synoptic activity are associated with alterations of the Northern Hemisphere circulation and background conditions (blocking frequencies, jet stream). The North Atlantic Oscillation index also shows increased values with enhanced forcing. With respect to the effects of changing synoptic activity, the regional change in cyclone intensities is accompanied by alterations of the extreme surface winds, with increasing values over Great Britain, North and Baltic Seas, as well as the areas with vanishing sea ice, and decreases over much of the subtropics.
Resumo:
Winter cyclone activity over the Northern Hemisphere is investigated in an ECHAM4/OPYC3 greenhouse gas scenario simulation. The goal of this investigation is to identify changes in cyclone activity associated with increasing concentrations. To this aim, two 50-year time periods are analysed, one representing present day climate conditions and the other a perturbed climate when CO2 concentrations exceed twice the present concentrations. Cyclone activity is assessed using an automatic algorithm, which identifies and tracks cyclones based on sea level pressure fields. The algorithm detects not only large and long living cyclones over the main ocean basins, but also their smaller counterparts in secondary storm track regions like the Mediterranean Basin. For the present climate, results show a good agreement with NCEP-reanalysis, provided that the spectral and time resolutions of the reanalysis are reduced to those available for the model. Several prominent changes in cyclone activity are observed for the scenario period in comparison to the present day climate, especially over the main ocean basins. A significant decrease of overall cyclone track density is found between 35 and 55 degrees North, together with a small increase polewards. These changes result from two different signals for deep and medium cyclones: for deep cyclones (core pressure below 990 hPa) there is a poleward shift in the greenhouse gas scenario, while for medium cyclones (core pressure between 990 and 1010 hPa) a general decrease in cyclone counts is found. The same kind of changes (a shift for intense cyclones and an overall decrease for the weaker ones) are detected when distinguishing cyclones from their intensity, quantified in terms of ∇2p. Thus, the simulated changes can not solely be attributed to alterations in mean sea level pressure. Instead, corresponding increases in upper-tropospheric baroclinicity suggest more favourable conditions for the development of stronger systems at higher latitudes, especially at the delta regions of the North Atlantic and the North Pacific storm tracks.
Resumo:
The parameterisation of diabatic processes in numerical models is critical for the accuracy of weather forecasts and for climate projections. A novel approach to the evaluation of these processes in models is introduced in this contribution. The approach combines a suite of on-line tracer diagnostics with off-line trajectory calculations. Each tracer tracks accumulative changes in potential temperature associated with a particular parameterised diabatic process in the model. A comparison of tracers therefore allows the identification of the most active diabatic processes and their downstream impacts. The tracers are combined with trajectories computed using model-resolved winds, allowing the various diabatic contributions to be tracked back to their time and location of occurrence. We have used this approach to investigate diabatic processes within a simulated extratropical cyclone. We focus on the warm conveyor belt, in which the dominant diabatic contributions come from large-scale latent heating and parameterised convection. By contrasting two simulations, one with standard convection parameterisation settings and another with reduced parameterised convection, the effects of parameterised convection on the structure of the cyclone have been determined. Under reduced parameterised convection conditions, the large-scale latent heating is forced to release convective instability that would otherwise have been released by the convection parameterisation. Although the spatial distribution of precipitation depends on the details of the split between parameterised convection and large-scale latent heating, the total precipitation amount associated with the cyclone remains largely unchanged. For reduced parameterised convection, a more rapid and stronger latent heating episode takes place as air ascends within the warm conveyor belt.
Resumo:
For the tracking of extrema associated with weather systems to be applied to a broad range of fields it is necessary to remove a background field that represents the slowly varying, large spatial scales. The sensitivity of the tracking analysis to the form of background field removed is explored for the Northern Hemisphere winter storm tracks for three contrasting fields from an integration of the U. K. Met Office's (UKMO) Hadley Centre Climate Model (HadAM3). Several methods are explored for the removal of a background field from the simple subtraction of the climatology, to the more sophisticated removal of the planetary scales. Two temporal filters are also considered in the form of a 2-6-day Lanczos filter and a 20-day high-pass Fourier filter. The analysis indicates that the simple subtraction of the climatology tends to change the nature of the systems to the extent that there is a redistribution of the systems relative to the climatological background resulting in very similar statistical distributions for both positive and negative anomalies. The optimal planetary wave filter removes total wavenumbers less than or equal to a number in the range 5-7, resulting in distributions more easily related to particular types of weather system. For the temporal filters the 2-6-day bandpass filter is found to have a detrimental impact on the individual weather systems, resulting in the storm tracks having a weak waveguide type of behavior. The 20-day high-pass temporal filter is less aggressive than the 2-6-day filter and produces results falling between those of the climatological and 2-6-day filters.
Resumo:
Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree well with analyses from the 40-yr ECMWF Re-Analysis (ERA-40), including the distribution of storms as a function of maximum intensity. This provides the authors with confidence in the use of the model for the climate change experiments. The statistical distribution of storm intensities is virtually preserved under climate change using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century. There are no indications in this study of more intense storms in the future climate, either in the Tropics or extratropics, but rather a minor reduction in the number of weaker storms. However, significant changes occur on a regional basis in the location and intensity of storm tracks. There is a clear poleward shift in the Southern Hemisphere with consequences of reduced precipitation for several areas, including southern Australia. Changes in the Northern Hemisphere are less distinct, but there are also indications of a poleward shift, a weakening of the Mediterranean storm track, and a strengthening of the storm track north of the British Isles. The tropical storm tracks undergo considerable changes including a weakening in the Atlantic sector and a strengthening and equatorward shift in the eastern Pacific. It is suggested that some of the changes, in particular the tropical ones, are due to an SST warming maximum in the eastern Pacific. The shift in the extratropical storm tracks is shown to be associated with changes in the zonal SST gradient in particular for the Southern Hemisphere.
Resumo:
A new method for assessing forecast skill and predictability that involves the identification and tracking of extratropical cyclones has been developed and implemented to obtain detailed information about the prediction of cyclones that cannot be obtained from more conventional analysis methodologies. The cyclones were identified and tracked along the forecast trajectories, and statistics were generated to determine the rate at which the position and intensity of the forecasted storms diverge from the analyzed tracks as a function of forecast lead time. The results show a higher level of skill in predicting the position of extratropical cyclones than the intensity. They also show that there is potential to improve the skill in predicting the position by 1 - 1.5 days and the intensity by 2 - 3 days, via improvements to the forecast model. Further analysis shows that forecasted storms move at a slower speed than analyzed storms on average and that there is a larger error in the predicted amplitudes of intense storms than the weaker storms. The results also show that some storms can be predicted up to 3 days before they are identified as an 850-hPa vorticity center in the analyses. In general, the results show a higher level of skill in the Northern Hemisphere (NH) than the Southern Hemisphere (SH); however, the rapid growth of NH winter storms is not very well predicted. The impact that observations of different types have on the prediction of the extratropical cyclones has also been explored, using forecasts integrated from analyses that were constructed from reduced observing systems. A terrestrial, satellite, and surface-based system were investigated and the results showed that the predictive skill of the terrestrial system was superior to the satellite system in the NH. Further analysis showed that the satellite system was not very good at predicting the growth of the storms. In the SH the terrestrial system has significantly less skill than the satellite system, highlighting the dominance of satellite observations in this hemisphere. The surface system has very poor predictive skill in both hemispheres.
Resumo:
Data from four recent reanalysis projects [ECMWF, NCEP-NCAR, NCEP - Department of Energy ( DOE), NASA] have been diagnosed at the scale of synoptic weather systems using an objective feature tracking method. The tracking statistics indicate that, overall, the reanalyses correspond very well in the Northern Hemisphere (NH) lower troposphere, although differences for the spatial distribution of mean intensities show that the ECMWF reanalysis is systematically stronger in the main storm track regions but weaker around major orographic features. A direct comparison of the track ensembles indicates a number of systems with a broad range of intensities that compare well among the reanalyses. In addition, a number of small-scale weak systems are found that have no correspondence among the reanalyses or that only correspond upon relaxing the matching criteria, indicating possible differences in location and/or temporal coherence. These are distributed throughout the storm tracks, particularly in the regions known for small-scale activity, such as secondary development regions and the Mediterranean. For the Southern Hemisphere (SH), agreement is found to be generally less consistent in the lower troposphere with significant differences in both track density and mean intensity. The systems that correspond between the various reanalyses are considerably reduced and those that do not match span a broad range of storm intensities. Relaxing the matching criteria indicates that there is a larger degree of uncertainty in both the location of systems and their intensities compared with the NH. At upper-tropospheric levels, significant differences in the level of activity occur between the ECMWF reanalysis and the other reanalyses in both the NH and SH winters. This occurs due to a lack of coherence in the apparent propagation of the systems in ERA15 and appears most acute above 500 hPa. This is probably due to the use of optimal interpolation data assimilation in ERA15. Also shown are results based on using the same techniques to diagnose the tropical easterly wave activity. Results indicate that the wave activity is sensitive not only to the resolution and assimilation methods used but also to the model formulation.
Resumo:
The aim of this paper is to explore the use of both an Eulerian and system-centered method of storm track diagnosis applied to a wide range of meteorological fields at multiple levels to provide a range of perspectives on the Northern Hemisphere winter transient motions and to give new insight into the storm track organization and behavior. The data used are primarily from the European Centre for Medium-Range Weather Forecasts reanalyses project extended with operational analyses to the period 1979-2000. This is supplemented by data from the National Centers for Environmental Prediction and Goddard Earth Observing System 1 reanalyses. The range of fields explored include the usual mean sea level pressure and the lower- and upper-tropospheric height, meridional wind, vorticity, and temperature, as well as the potential vorticity (PV) on a 330-K isentropic surface (PV330) and potential temperature on a PV = 2 PVU surface (theta(PV2)). As well as reporting the primary analysis based on feature tracking, the standard Eulerian 2-6-day bandpass filtered variance analysis is also reported and contrasted with the tracking diagnostics. To enable the feature points to be identified as extrema for all the chosen fields, a planetary wave background structure is removed at each data time. The bandpass filtered variance derived from the different fields yield a rich picture of the nature and comparative magnitudes of the North Pacific and Atlantic storm tracks, and of the Siberian and Mediterranean candidates for storm tracks. The feature tracking allows the cyclonic and anticyclonic activities to be considered seperately. The analysis indicates that anticyclonic features are generally much weaker with less coherence than the cyclonic systems. Cyclones and features associated with them are shown to have much greater coherence and give tracking diagnostics that create a vivid storm track picture that includes the aspects highlighted by the variances as well as highlighting aspects that are not readily available from Eulerian studies. In particular, the upper-tropospheric features as shown by negative theta(PV2), for example, occur in a band spiraling around the hemisphere from the subtropical North Atlantic eastward to the high latitudes of the same ocean basin. Lower-troposphere storm tracks occupy more limited longitudinal sectors, with many of the individual storms possibly triggered from the upper-tropospheric disturbances in the spiral band of activity.
Resumo:
Automatic tracking of vorticity centers in European Centre for Medium-Range Weather Forecasts analyses has been used to develop a 20-yr climatology of African easterly wave activity. The tracking statistics at 600 and 850 mb confirm the complicated easterly wave structures present over the African continent. The rainy zone equatorward of 15 degreesN is dominated by 600-mb activity, and the much drier Saharan region poleward of 15 degreesN is more dominated by 850-mb activity. Over the Atlantic Ocean there is just one storm track with the 600- and 850-mb wave activity collocated. Based on growth/decay and genesis statistics, it appears that the 850-mb waves poleward of 15 degreesN over land generally do not get involved with the equatorward storm track over the ocean. Instead, there appears to be significant development of 850-mb activity at the West African coast in the rainy zone around (10 degreesN, 10 degreesW), which, it is proposed, is associated with latent heat release. Based on the tracking statistics, it has been shown that there is marked interannual variability in African easterly wave (AEW) activity. It is especially marked at the 850-mb level at the West African coast between about 10 degrees and 15 degreesN, where the coefficient of variation is 0.29. For the period between 1985 and 1998, a notable positive correlation is seen between this AEW activity and Atlantic tropical cyclone activity. This correlation is particularly strong for the postreanalysis period between 1994 and 1998. This result suggests that Atlantic tropical cyclone activity may be influenced by the number of AEWs leaving the West African coast, which have significant low-level amplitudes, and not simply by the total number of AEWs.
Resumo:
Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure, vorticity, wind, and precipitation associated with the cyclones are investigated and compared with a lower-resolution simulation. Comparison with observations of extreme wind speeds indicates that the model reproduces realistic values. This study also investigates the ability of the model to simulate extratropical cyclones by computing composites of intense storms and contrasting them with the same composites from the 40-yr ECMWF Re-Analysis (ERA-40). Composites of the time evolution of intense cyclones are reproduced with great fidelity; in particular the evolution of central surface pressure is almost exactly replicated, but vorticity, maximum wind speed, and precipitation are higher in the model. Spatial composites also show that the distributions of pressure, winds, and precipitation at different stages of the cyclone life cycle compare well with those from ERA-40, as does the vertical structure. For the twenty-first century, changes in the distribution of storms are very similar to those of previous study. There is a small reduction in the number of cyclones but no significant changes in the extremes of wind and vorticity in both hemispheres. There are larger regional changes in agreement with previous studies. The largest changes are in the total precipitation, where a significant increase is seen. Cumulative precipitation along the tracks of the cyclones increases by some 11% per track, or about twice the increase in global precipitation, while the extreme precipitation is close to the globally averaged increase in column water vapor (some 27%). Regionally, changes in extreme precipitation are even higher because of changes in the storm tracks.