27 resultados para Cross Spectrum Analysis
Resumo:
The time scale of the response of the high-latitude dayside ionospheric flow to changes in the North-South component of the interplanetary magnetic field (IMF) has been investigated by examining the time delays between corresponding sudden changes. Approximately 40 h of simultaneous IMF and ionospheric flow data have been examined, obtained by the AMPTE-UKS and -IRM spacecraft and the EISCAT “Polar” experiment, respectively, in which 20 corresponding sudden changes have been identified. Ten of these changes were associated with southward turnings of the IMF, and 10 with northward turnings. It has been found that the corresponding flow changes occurred simultaneously over the whole of the “Polar” field-of-view, extending more than 2° in invariant latitude, and that the ionospheric response delay following northward turnings is the same as that following southward turnings, though the form of the response is different in the two cases. The shortest response time, 5.5 ± 3.2 min, is found in the early- to mid-afternoon sector, increasing to 9.5 ± 3.0 min in the mid-morning sector, and to 9.5 ± 3.1 min near to dusk. These times represent the delays in the appearance of perturbed flows in the “Polar” field-of-view following the arrival of IMF changes at the subsolar magnetopause. Overall, the results agree very well with those derived by Etemadi et al. (1988, Planet. Space Sci.36, 471) from a general cross-correlation analysis of the IMF Bz and “Polar” beam-swinging vector flow data.
Resumo:
Contamination of the electroencephalogram (EEG) by artifacts greatly reduces the quality of the recorded signals. There is a need for automated artifact removal methods. However, such methods are rarely evaluated against one another via rigorous criteria, with results often presented based upon visual inspection alone. This work presents a comparative study of automatic methods for removing blink, electrocardiographic, and electromyographic artifacts from the EEG. Three methods are considered; wavelet, blind source separation (BSS), and multivariate singular spectrum analysis (MSSA)-based correction. These are applied to data sets containing mixtures of artifacts. Metrics are devised to measure the performance of each method. The BSS method is seen to be the best approach for artifacts of high signal to noise ratio (SNR). By contrast, MSSA performs well at low SNRs but at the expense of a large number of false positive corrections.
Resumo:
Purpose This research explored the use of developmental evaluation methods with community of practice programmes experiencing change or transition to better understand how to target support resources. Design / methodology / approach The practical use of a number of developmental evaluation methods was explored in three organisations over a nine month period using an action research design. The research was a collaborative process involving all the company participants and the academic (the author) with the intention of developing the practices of the participants as well as contributing to scholarship. Findings The developmental evaluation activities achieved the objectives of the knowledge managers concerned: they developed a better understanding of the contribution and performance of their communities of practice, allowing support resources to be better targeted. Three methods (fundamental evaluative thinking, actual-ideal comparative method and focus on strengths and assets) were found to be useful. Cross-case analysis led to the proposition that developmental evaluation methods act as a structural mechanism that develops the discourse of the organisation in ways that enhance the climate for learning, potentially helping develop a learning organization. Practical implications Developmental evaluation methods add to the options available to evaluate community of practice programmes. These supplement the commonly used activity indicators and impact story methods. 2 Originality / value Developmental evaluation methods are often used in social change initiatives, informing public policy and funding decisions. The contribution here is to extend their use to organisational community of practice programmes.
Resumo:
This paper investigates the application of the Hilbert spectrum (HS), which is a recent tool for the analysis of nonlinear and nonstationary time-series, to the study of electromyographic (EMG) signals. The HS allows for the visualization of the energy of signals through a joint time-frequency representation. In this work we illustrate the use of the HS in two distinct applications. The first is for feature extraction from EMG signals. Our results showed that the instantaneous mean frequency (IMNF) estimated from the HS is a relevant feature to clinical practice. We found that the median of the IMNF reduces when the force level of the muscle contraction increases. In the second application we investigated the use of the HS for detection of motor unit action potentials (MUAPs). The detection of MUAPs is a basic step in EMG decomposition tools, which provide relevant information about the neuromuscular system through the morphology and firing time of MUAPs. We compared, visually, how MUAP activity is perceived on the HS with visualizations provided by some traditional (e.g. scalogram, spectrogram, Wigner-Ville) time-frequency distributions. Furthermore, an alternative visualization to the HS, for detection of MUAPs, is proposed and compared to a similar approach based on the continuous wavelet transform (CWT). Our results showed that both the proposed technique and the CWT allowed for a clear visualization of MUAP activity on the time-frequency distributions, whereas results obtained with the HS were the most difficult to interpret as they were extremely affected by spurious energy activity. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper investigates the scale and drivers of cross-border real estate development in western and central and eastern Europe (CEE). Drawing upon existing literature on the integration of international real estate markets, we make some inferences on expected patterns of cross-border real estate development from this literature review. The paper draws upon a transactions database in order to assess the penetration of national markets by international real estate developers. The determinants of cross-border transaction flows are modeled as a function the range of economic and real estate variables. Whilst western European markets tend to be dominated by local developers, much higher levels of market penetration by international real estate developers are found in the less mature markets of central and eastern Europe. Empirical modelling based on gravity model specifications reveal the importance of size of the economies, distance between countries, extent of globalization and EU membership as significant determinants of cross-border real estate development flow.
Resumo:
The article features a conversation between Rob Cross and Martin Kilduff about organizational network analysis in research and practice. It demonstrates the value of using social network perspectives in HRM. Drawing on the discussion about managing personal networks; managing the networks of others; the impact of social networking sites on perceptions of relationships; and ethical issues in organizational network analysis, we propose specific suggestions to bring social network perspectives closer to HRM researchers and practitioners and rebalance our attention to people and to their relationships.
Resumo:
This study investigated the effects of increased genetic diversity in winter wheat (Triticum aestivum L.), either from hybridization across genotypes or from physical mixing of lines, on grain yield, grain quality, and yield stability in different cropping environments. Sets of pure lines (no diversity), chosen for high yielding ability or high quality, were compared with line mixtures (intermediate level of diversity), and lines crossed with each other in composite cross populations (CCPn, high diversity). Additional populations containing male sterility genes (CCPms) to increase outcrossing rates were also tested. Grain yield, grain protein content, and protein yield were measured at four sites (two organically-managed and two conventionally-managed) over three years, using seed harvested locally in each preceding year. CCPn and mixtures out-yielded the mean of the parents by 2.4% and 3.6%, respectively. These yield differences were consistent across genetic backgrounds but partly inconsistent across cropping environments and years. Yield stability measured by environmental variance was higher in CCPn and CCPms than the mean of the parents. An index of yield reliability tended to be higher in CCPn, CCPms and mixtures than the mean of the parents. Lin and Binns’ superiority values of yield and protein yield were consistently and significantly lower (i.e. better) in the CCPs than in the mean of the parents, but not different between CCPs and mixtures. However, CCPs showed greater early ground cover and plant height than mixtures. When compared with the (locally non-predictable) best-yielding pure line, CCPs and mixtures exhibited lower mean yield and somewhat lower yield reliability but comparable superiority values. Thus, establishing CCPs from smaller sets of high-performing parent lines might optimize their yielding ability. On the whole, the results demonstrate that using increased within-crop genetic diversity can produce wheat crops with improved yield stability and good yield reliability across variable and unpredictable cropping environments.
Resumo:
Background Autism spectrum conditions (ASC) are a group of neurodevelopmental conditions characterized by difficulties in social interaction and communication alongside repetitive and stereotyped behaviours. ASC are heritable, and common genetic variants contribute substantial phenotypic variability. More than 600 genes have been implicated in ASC to date. However, a comprehensive investigation of candidate gene association studies in ASC is lacking. Methods In this study, we systematically reviewed the literature for association studies for 552 genes associated with ASC. We identified 58 common genetic variants in 27 genes that have been investigated in three or more independent cohorts and conducted a meta-analysis for 55 of these variants. We investigated publication bias and sensitivity and performed stratified analyses for a subset of these variants. Results We identified 15 variants nominally significant for the mean effect size, 8 of which had P values below a threshold of significance of 0.01. Of these 15 variants, 11 were re-investigated for effect sizes and significance in the larger Psychiatric Genomics Consortium dataset, and none of them were significant. Effect direction for 8 of the 11 variants were concordant between both the datasets, although the correlation between the effect sizes from the two datasets was poor and non-significant. Conclusions This is the first study to comprehensively examine common variants in candidate genes for ASC through meta-analysis. While for majority of the variants, the total sample size was above 500 cases and 500 controls, the total sample size was not large enough to accurately identify common variants that contribute to the aetiology of ASC.