64 resultados para Crop Forecasting System


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ensemble experiments are performed with five coupled atmosphere-ocean models to investigate the potential for initial-value climate forecasts on interannual to decadal time scales. Experiments are started from similar model-generated initial states, and common diagnostics of predictability are used. We find that variations in the ocean meridional overturning circulation (MOC) are potentially predictable on interannual to decadal time scales, a more consistent picture of the surface temperature impact of decadal variations in the MOC is now apparent, and variations of surface air temperatures in the North Atlantic Ocean are also potentially predictable on interannual to decadal time scales. albeit with potential skill levels that are less than those seen for MOC variations. This intercomparison represents a step forward in assessing the robustness of model estimates of potential skill and is a prerequisite for the development of any operational forecasting system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation is made of the impact of a full linearized physical (moist) parameterization package on extratropical singular vectors (SVs) using the ECMWF integrated forecasting system (IFS). Comparison is made for one particular period with a dry physical package including only vertical diffusion and surface drag. The crucial extra ingredient in the full package is found to be the large-scale latent heat release. Consistent with basic theory, its inclusion results in a shift to smaller horizontal scales and enhanced growth for the SVs. Whereas, for the dry SVs, T42 resolution is sufficient, the moist SVs require T63 to resolve their structure and growth. A 24-h optimization time appears to be appropriate for the moist SVs because of the larger growth of moist SVs compared with dry SVs. Like dry SVs, moist SVs tend to occur in regions of high baroclinicity, but their location is also influenced by the availability of moisture. The most rapidly growing SVs appear to enhance or reduce large-scale rain in regions ahead of major cold fronts. The enhancement occurs in and ahead of a cyclonic perturbation and the reduction in and ahead of an anticyclonic perturbation. Most of the moist SVs for this situation are slightly modified versions of the dry SVs. However, some occur in new locations and have particularly confined structures. The most rapidly growing SV is shown to exhibit quite linear behavior in the nonlinear model as it grows from 0.5 to 12 hPa in 1 day. For 5 times this amplitude the structure is similar but the growth is about half as the perturbation damps a potential vorticity (PV) trough or produces a cutoff, depending on its sign.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the forecasting of binary events, verification measures that are “equitable” were defined by Gandin and Murphy to satisfy two requirements: 1) they award all random forecasting systems, including those that always issue the same forecast, the same expected score (typically zero), and 2) they are expressible as the linear weighted sum of the elements of the contingency table, where the weights are independent of the entries in the table, apart from the base rate. The authors demonstrate that the widely used “equitable threat score” (ETS), as well as numerous others, satisfies neither of these requirements and only satisfies the first requirement in the limit of an infinite sample size. Such measures are referred to as “asymptotically equitable.” In the case of ETS, the expected score of a random forecasting system is always positive and only falls below 0.01 when the number of samples is greater than around 30. Two other asymptotically equitable measures are the odds ratio skill score and the symmetric extreme dependency score, which are more strongly inequitable than ETS, particularly for rare events; for example, when the base rate is 2% and the sample size is 1000, random but unbiased forecasting systems yield an expected score of around −0.5, reducing in magnitude to −0.01 or smaller only for sample sizes exceeding 25 000. This presents a problem since these nonlinear measures have other desirable properties, in particular being reliable indicators of skill for rare events (provided that the sample size is large enough). A potential way to reconcile these properties with equitability is to recognize that Gandin and Murphy’s two requirements are independent, and the second can be safely discarded without losing the key advantages of equitability that are embodied in the first. This enables inequitable and asymptotically equitable measures to be scaled to make them equitable, while retaining their nonlinearity and other properties such as being reliable indicators of skill for rare events. It also opens up the possibility of designing new equitable verification measures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Considerable progress has taken place in numerical weather prediction over the last decade. It has been possible to extend predictive skills in the extra-tropics of the Northern Hemisphere during the winter from less than five days to seven days. Similar improvements, albeit on a lower level, have taken place in the Southern Hemisphere. Another example of improvement in the forecasts is the prediction of intense synoptic phenomena such as cyclogenesis which on the whole is quite successful with the most advanced operational models (Bengtsson (1989), Gadd and Kruze (1988)). A careful examination shows that there are no single causes for the improvements in predictive skill, but instead they are due to several different factors encompassing the forecasting system as a whole (Bengtsson, 1985). In this paper we will focus our attention on the role of data-assimilation and the effect it may have on reducing the initial error and hence improving the forecast. The first part of the paper contains a theoretical discussion on error growth in simple data assimilation systems, following Leith (1983). In the second part we will apply the result on actual forecast data from ECMWF. The potential for further forecast improvements within the framework of the present observing system in the two hemispheres will be discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper the properties of a hydro-meteorological forecasting system for forecasting river flows have been analysed using a probabilistic forecast convergence score (FCS). The focus on fixed event forecasts provides a forecaster's approach to system behaviour and adds an important perspective to the suite of forecast verification tools commonly used in this field. A low FCS indicates a more consistent forecast. It can be demonstrated that the FCS annual maximum decreases over the last 10 years. With lead time, the FCS of the ensemble forecast decreases whereas the control and high resolution forecast increase. The FCS is influenced by the lead time, threshold and catchment size and location. It indicates that one should use seasonality based decision rules to issue flood warnings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of the forecasts and hindcasts from the ECMWF 32-day forecast model reveals that there is statistically significant skill in predicting weekly mean wind speeds over areas of Europe at lead times of at least 14–20 days. Previous research on wind speed predictability has focused on the short- to medium-range time scales, typically finding that forecasts lose all skill by the later part of the medium-range forecast. To the authors’ knowledge, this research is the first to look beyond the medium-range time scale by taking weekly mean wind speeds, instead of averages at hourly or daily resolution, for the ECMWF monthly forecasting system. It is shown that the operational forecasts have high levels of correlation (~0.6) between the forecasts and observations over the winters of 2008–12 for some areas of Europe. Hindcasts covering 20 winters show a more modest level of correlation but are still skillful. Additional analysis examines the probabilistic skill for the United Kingdom with the application of wind power forecasting in mind. It is also shown that there is forecast “value” for end users (operating in a simple cost/loss ratio decision-making framework). End users that are sensitive to winter wind speed variability over the United Kingdom, Germany, and some other areas of Europe should therefore consider forecasts beyond the medium-range time scale as it is clear there is useful information contained within the forecast.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The skill of a forecast can be assessed by comparing the relative proximity of both the forecast and a benchmark to the observations. Example benchmarks include climatology or a naïve forecast. Hydrological ensemble prediction systems (HEPS) are currently transforming the hydrological forecasting environment but in this new field there is little information to guide researchers and operational forecasters on how benchmarks can be best used to evaluate their probabilistic forecasts. In this study, it is identified that the forecast skill calculated can vary depending on the benchmark selected and that the selection of a benchmark for determining forecasting system skill is sensitive to a number of hydrological and system factors. A benchmark intercomparison experiment is then undertaken using the continuous ranked probability score (CRPS), a reference forecasting system and a suite of 23 different methods to derive benchmarks. The benchmarks are assessed within the operational set-up of the European Flood Awareness System (EFAS) to determine those that are ‘toughest to beat’ and so give the most robust discrimination of forecast skill, particularly for the spatial average fields that EFAS relies upon. Evaluating against an observed discharge proxy the benchmark that has most utility for EFAS and avoids the most naïve skill across different hydrological situations is found to be meteorological persistency. This benchmark uses the latest meteorological observations of precipitation and temperature to drive the hydrological model. Hydrological long term average benchmarks, which are currently used in EFAS, are very easily beaten by the forecasting system and the use of these produces much naïve skill. When decomposed into seasons, the advanced meteorological benchmarks, which make use of meteorological observations from the past 20 years at the same calendar date, have the most skill discrimination. They are also good at discriminating skill in low flows and for all catchment sizes. Simpler meteorological benchmarks are particularly useful for high flows. Recommendations for EFAS are to move to routine use of meteorological persistency, an advanced meteorological benchmark and a simple meteorological benchmark in order to provide a robust evaluation of forecast skill. This work provides the first comprehensive evidence on how benchmarks can be used in evaluation of skill in probabilistic hydrological forecasts and which benchmarks are most useful for skill discrimination and avoidance of naïve skill in a large scale HEPS. It is recommended that all HEPS use the evidence and methodology provided here to evaluate which benchmarks to employ; so forecasters can have trust in their skill evaluation and will have confidence that their forecasts are indeed better.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the Trop- ics. It can be characterised as a planetary-scale coupling between the atmospheric circulation and organised deep convection that propagates east through the equatorial Indo-Pacific region. The MJO interacts with weather and climate systems on a near-global scale and is a crucial source of predictability for weather forecasts on medium to seasonal timescales. Despite its global signifi- cance, accurately representing the MJO in numerical weather prediction (NWP) and climate models remains a challenge. This thesis focuses on the representation of the MJO in the Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasting (ECMWF), a state-of-the-art NWP model. Recent modifications to the model physics in Cycle 32r3 (Cy32r3) of the IFS led to ad- vances in the simulation of the MJO; for the first time the observed amplitude of the MJO was maintained throughout the integration period. A set of hindcast experiments, which differ only in their formulation of convection, have been performed between May 2008 and April 2009 to asses the sensitivity of MJO simulation in the IFS to the Cy32r3 convective parameterization. Unique to this thesis is the attribution of the advances in MJO simulation in Cy32r3 to the mod- ified convective parameterization, specifically, the relative-humidity-dependent formulation for or- ganised deep entrainment. Increasing the sensitivity of the deep convection scheme to environmen- tal moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid-troposphere. Due to the modified precipitation-moisture relationship more moisture is able to build up which effectively preconditions the tropical atmosphere for the transition to deep convection. Results from this thesis suggest that a tropospheric moisture control on convection is key to simulating the interaction between the physics and large-scale circulation associated with the MJO.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When assessing hypotheses, the possibility and consequences of false-positive conclusions should be considered along with the avoidance of false-negative ones. A recent assessment of the system of rice intensification (SRI) by McDonald et al. [McDonald, A.J., Hobbs, P.R., Riha, S.J., 2006. Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Res. 96, 31-36] provides a good example where this was not done as it was preoccupied with avoiding false-positives only. It concluded, based on a desk study using secondary data assembled selectively from diverse sources and with a 95% level of confidence, that 'best management practices' (BMPs) on average produce 11% higher rice yields than SRI methods, and that, therefore, SRI has little to offer beyond what is already known by scientists.