29 resultados para Craft specialization
Resumo:
Global financial activity is heavily concentrated in a small number of world cities –international financial centers. The office markets in those cities receive significant flows of investment capital. The growing specialization of activity in IFCs and innovations in real estate investment vehicles lock developer, occupier, investment, and finance markets together, creating common patterns of movement and transmitting shocks from one office market throughout the system. International real estate investment strategies that fail to recognize this common source of volatility and risk may fail to deliver the diversification benefits sought.
Resumo:
Classical Greek and Roman influence on the material culture of Central Asia and northwestern India is often considered in the abstract. This article attempts to examine the mechanisms of craft production and movement of artisans and objects which made such influence possible, through four case studies: (1) Mould-made ceramics in Hellenistic eastern Bactria; (2) Plaster casts used in the production of metalware from Begram; (3) Terracotta figurines and the moulds used to produce them, from various archaeological sites; and (4) Mass production of identical gold adornments in the nomadic tombs from Tillya Tepe. The implications of such techniques for our understanding of the development of Gandhāran art are also discussed.
Resumo:
1. It has been postulated that climate warming may pose the greatest threat species in the tropics, where ectotherms have evolved more thermal specialist physiologies. Although species could rapidly respond to environmental change through adaptation, little is known about the potential for thermal adaptation, especially in tropical species. 2. In the light of the limited empirical evidence available and predictions from mutation-selection theory, we might expect tropical ectotherms to have limited genetic variance to enable adaptation. However, as a consequence of thermodynamic constraints, we might expect this disadvantage to be at least partially offset by a fitness advantage, that is, the ‘hotter-is-better’ hypothesis. 3. Using an established quantitative genetics model and metabolic scaling relationships, we integrate the consequences of the opposing forces of thermal specialization and thermodynamic constraints on adaptive potential by evaluating extinction risk under climate warming. We conclude that the potential advantage of a higher maximal development rate can in theory more than offset the potential disadvantage of lower genetic variance associated with a thermal specialist strategy. 4. Quantitative estimates of extinction risk are fundamentally very sensitive to estimates of generation time and genetic variance. However, our qualitative conclusion that the relative risk of extinction is likely to be lower for tropical species than for temperate species is robust to assumptions regarding the effects of effective population size, mutation rate and birth rate per capita. 5. With a view to improving ecological forecasts, we use this modelling framework to review the sensitivity of our predictions to the model’s underpinning theoretical assumptions and the empirical basis of macroecological patterns that suggest thermal specialization and fitness increase towards the tropics. We conclude by suggesting priority areas for further empirical research.
Resumo:
The paper reviews the leading diagramming methods employed in system dynamics to communicate the contents of models. The main ideas and historical development of the field are first outlined. Two diagramming methods—causal loop diagrams (CLDs) and stock/flow diagrams (SFDs)—are then described and their advantages and limitations discussed. A set of broad research directions is then outlined. These concern: the abilities of different diagrams to communicate different ideas, the role that diagrams have in group model building, and the question of whether diagrams can be an adequate substitute for simulation modelling. The paper closes by suggesting that although diagrams alone are insufficient, they have many benefits. However, since these benefits have emerged only as ‘craft wisdom’, a more rigorous programme of research into the diagrams' respective attributes is called for.
Resumo:
This paper investigates the regional characteristics of Indian manufacturing industry. Its aim is to assess whether geography plays any major role in determining the performance or characteristics of Indian manufacturing firms, and in order to do this, it presents the results of cross-section regressions estimated on the basis of a balanced sample of 1607 firms across the 30 Indian states. The results suggest that firm performance and characteristics are related to many of the expected industrial organization variables. However, there is also evidence of significant region–state influences on both the performance and characteristics of Indian manufacturing industry. As such, the results demonstrate that analyses which focus solely on standard non-spatial industrial organization variables will fail to explain much of the cross-sectional variation in firm performance and characteristics. In particular, while there are no systematic simple centre–periphery variations in the Indian regional economic system, there is evidence to suggest that industrial spatial concentration, regional specialization, and regional market size play a key role in determining the performance and characteristics of Indian manufacturing industry.
Resumo:
The rising share of intangibles in economies worldwide highlights the crucial role of knowledge-intensive and creative industries in current and future wealth generation. The recognition of this trend has led to intense competition in these industries. At the micro-level, firms from both advanced and emerging economies are globally dispersing their value chains to control costs and leverage capabilities. The geography of innovation is the outcome of a dynamic process whereby firms from emerging economies strive to catch-up with advanced economy competitors, creating strong pressures for continued innovation. However, two distinct strategies can be discerned with regard to the control of the value chain. A vertical integration strategy emphasizes taking advantage of ‘linkage economies’ whereby controlling multiple value chain activities enhances the efficiency and effectiveness of each one of them. In contrast, a specialization strategy focuses on identifying and controlling the creative heart of the value chain, while outsourcing all other activities. The global mobile handset industry is used as the template to illustrate the theory.
Resumo:
The early twentieth century constituted the heyday of the ‘breadwinner–homemaker’ household, characterized by a high degree of intra-household functional specialization between paid and domestic work according to age, gender, and marital status. This article examines the links between formal workforce participation and access to resources for individualized discretionary spending in British working-class households during the late 1930s, via an analysis of household leisure expenditures. Leisure spending is particularly salient to intra-household resource allocation, as it constitutes one of the most highly prioritized areas of individualized expenditure, especially for young, single people. Using a database compiled from surviving returns to the Ministry of Labour's national 1937/8 working-class expenditure survey, we examine leisure participation rates for over 600 households, using a detailed set of commercial leisure activities together with other relevant variables. We find that the employment status of family members other than the male breadwinner was a key factor influencing their access to commercial leisure. Our analysis thus supports the view that the breadwinner–homemaker household was characterized by strong power imbalances that concentrated resources—especially for individualized expenditures—in the hands of those family members who engaged in paid labour.
Resumo:
There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing
Resumo:
The interpretation of structure in cusp ion dispersions is important for helping to understand the temporal and spatial structure of magnetopause reconnection. “Stepped” and “sawtooth” signatures have been shown to be caused by temporal variations in the reconnection rate under the same physical conditions for different satellite trajectories. The present paper shows that even for a single satellite path, a change in the amplitude of any reconnection pulses can alter the observed signature and even turn sawtooth into stepped forms and vice versa. On 20 August 1998, the Defense Meteorological Satellite Program (DMSP) craft F-14 crossed the cusp just to the south of Longyearbyen, returning on the following orbit. The two passes by the DMSP F-14 satellites have very similar trajectories and the open-closed field line boundary (OCB) crossings, as estimated from the SSJ/4 precipitating particle data and Polar UVI images, imply a similarly-shaped polar cap, yet the cusp ion dispersion signatures differ substantially. The cusp crossing at 08:54 UT displays a stepped ion dispersion previously considered to be typical of a meridional pass, whereas the crossing at 10:38 UT is a sawtooth form ion dispersion, previously considered typical of a satellite travelling longitudinally with respect to the OCB. It is shown that this change in dispersed ion signature is likely to be due to a change in the amplitude of the pulses in the reconnection rate, causing the stepped signature. Modelling of the low-energy ion cutoff under different conditions has reproduced the forms of signature observed.
Resumo:
The destruction of the four Cluster craft was a major loss to the planned ISTP effort, of which studies of the magnetopause and low-latitude boundary layer (LLBL) were an important part. While awaiting the re-flight mission, Cluster-II, we have been applying advances in our understanding made using other ISTP craft (like Polar and Wind) and using ground-based facilities (in particular the EISCAT incoherent scatter radars and the SuperDARN HF coherent radars) to measurements of the LLBL made in 1984 and 1985 by the AMPTE-UKS and -IRM spacecraft pair. In particular, one unexplained result of the AMPTE mission was that the electron characteristics could, in nearly all cases, order independent measurements near the magnetopause, such as the magnetic field, ion temperatures and the plasma flow. Studies of the cusp have shown that the precipitation is ordered by the time-elapsed since the field line was opened by reconnection. This insight has allowed us to reanalyse the AMPTE data and show that the ordering by the transition parameter is also due to the variation of time elapsed since reconnection, with the important implication that reconnection usually coats most of the dayside magnetopause with at least some newly-opened field lines. In addition, we can use the electron characteristics to isolate features like RDs, slow-mode shocks and slow-mode expansion fans. The ion characteristics can be used to compute the reconnection rate. We here retrospectively apply these new techniques, developed in the ISTP era, to a much-studied flux transfer event observed by the AMPTE satellites. As a result, we gain new understanding of its cause and structure.
Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects
Resumo:
Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km2) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.
Resumo:
In humans, both language and fine motor skills are associated with left-hemisphere specialization, whereas visuospatial skills are associated with right-hemisphere specialization. Individuals with autism spectrum conditions (ASC) show a profile of deficits and strengths that involves these lateralized cognitive functions. Here we test the hypothesis that regions implicated in these functions are atypically rightward lateralized in individuals with ASC and, that such atypicality is associated with functional performance. Participants included 67 male, right-handed adults with ASC and 69 age- and IQ-matched neurotypical males. We assessed group differences in structural asymmetries in cortical regions of interest with voxel-based analysis of grey matter volumes, followed by correlational analyses with measures of language, motor and visuospatial skills. We found stronger rightward lateralization within the inferior parietal lobule and reduced leftward lateralization extending along the auditory cortex comprising the planum temporale, Heschl's gyrus, posterior supramarginal gyrus, and parietal operculum, which was more pronounced in ASC individuals with delayed language onset compared to those without. Planned correlational analyses showed that for individuals with ASC, reduced leftward asymmetry in the auditory region was associated with more childhood social reciprocity difficulties. We conclude that atypical cerebral structural asymmetry is a potential candidate neurophenotype of ASC
Resumo:
Humans’ unique cognitive abilities are usually attributed to a greatly expanded neocortex, which has been described as “the crowning achievement of evolution and the biological substrate of human mental prowess” [1]. The human cerebellum, however, contains four times more neurons than the neocortex [2] and is attracting increasing attention for its wide range of cognitive functions. Using a method for detecting evolutionary rate changes along the branches of phylogenetic trees, we show that the cerebellum underwent rapid size increase throughout the evolution of apes, including humans, expanding significantly faster than predicted by the change in neocortex size. As a result, humans and other apes deviated significantly from the general evolutionary trend for neocortex and cerebellum to change in tandem, having significantly larger cerebella relative to neocortex size than other anthropoid primates. These results suggest that cerebellar specialization was a far more important component of human brain evolution than hitherto recognized and that technical intelligence was likely to have been at least as important as social intelligence in human cognitive evolution. Given the role of the cerebellum in sensory-motor control and in learning complex action sequences, cerebellar specialization is likely to have underpinned the evolution of humans’ advanced technological capacities, which in turn may have been a preadaptation for language.