57 resultados para Covariance estimate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare insulin sensitivity (Si) from a frequently sampled intravenous glucose tolerance test (FSIGT) and subsequent minimal model analyses with surrogate measures of insulin sensitivity and resistance and to compare features of the metabolic syndrome between Caucasians and Indian Asians living in the UK. SUBJECTS: In all, 27 healthy male volunteers (14 UK Caucasians and 13 UK Indian Asians), with a mean age of 51.2 +/- 1.5 y, BMI of 25.8 +/- 0.6 kg/m(2) and Si of 2.85 +/- 0.37. MEASUREMENTS: Si was determined from an FSIGT with subsequent minimal model analysis. The concentrations of insulin, glucose and nonesterified fatty acids (NEFA) were analysed in fasting plasma and used to calculate surrogate measure of insulin sensitivity (quantitative insulin sensitivity check index (QUICKI), revised QUICKI) and resistance (homeostasis for insulin resistance (HOMA IR), fasting insulin resistance index (FIRI), Bennetts index, fasting insulin, insulin-to-glucose ratio). Plasma concentrations of triacylglycerol (TAG), total cholesterol, high density cholesterol, (HDL-C) and low density cholesterol, (LDL-C) were also measured in the fasted state. Anthropometric measurements were conducted to determine body-fat distribution. RESULTS: Correlation analysis identified the strongest relationship between Si and the revised QUICKI (r = 0.67; P = 0.000). Significant associations were also observed between Si and QUICKI (r = 0.51; P = 0.007), HOMA IR (r = -0.50; P = 0.009), FIRI and fasting insulin. The Indian Asian group had lower HDL-C (P = 0.001), a higher waist-hip ratio (P = 0.01) and were significantly less insulin sensitive (Si) than the Caucasian group (P = 0.02). CONCLUSION: The revised QUICKI demonstrated a statistically strong relationship with the minimal model. However, it was unable to differentiate between insulin-sensitive and -resistant groups in this study. Future larger studies in population groups with varying degrees of insulin sensitivity are recommended to investigate the general applicability of the revised QUICKI surrogate technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event-related functional magnetic resonance imaging (efMRI) has emerged as a powerful technique for detecting brains' responses to presented stimuli. A primary goal in efMRI data analysis is to estimate the Hemodynamic Response Function (HRF) and to locate activated regions in human brains when specific tasks are performed. This paper develops new methodologies that are important improvements not only to parametric but also to nonparametric estimation and hypothesis testing of the HRF. First, an effective and computationally fast scheme for estimating the error covariance matrix for efMRI is proposed. Second, methodologies for estimation and hypothesis testing of the HRF are developed. Simulations support the effectiveness of our proposed methods. When applied to an efMRI dataset from an emotional control study, our method reveals more meaningful findings than the popular methods offered by AFNI and FSL. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eddy-covariance measurements of carbon dioxide fluxes were taken semi-continuously between October 2006 and May 2008 at 190 m height in central London (UK) to quantify emissions and study their controls. Inner London, with a population of 8.2 million (~5000 inhabitants per km2) is heavily built up with 8% vegetation cover within the central boroughs. CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). The measurement period allowed investigation of both diurnal patterns and seasonal trends. Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity that controlled the seasonal variability. Despite measurements being taken at ca. 22 times the mean building height, coupling with street level was adequate, especially during daytime. Night-time saw a higher occurrence of stable or neutral stratification, especially in autumn and winter, which resulted in data loss in post-processing. No significant difference was found between the annual estimate of net exchange of CO2 for the expected measurement footprint and the values derived from the National Atmospheric Emissions Inventory (NAEI), with daytime fluxes differing by only 3%. This agreement with NAEI data also supported the use of the simple flux footprint model which was applied to the London site; this also suggests that individual roughness elements did not significantly affect the measurements due to the large ratio of measurement height to mean building height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines if shell oxygen isotope ratios (d18Oar) of Unio sp. can be used as a proxy of past discharge of the river Meuse. The proxy was developed from a modern dataset for the reference time interval 1997–2007, which showed a logarithmic relationship between discharge and measured water oxygen isotope ratios(d18Ow). To test this relationship for past time intervals,d18Oar values were measured in the aragonite of the growth increments of four Unio sp. shells; two from a relatively wet period and two from a very dry time interval (1910–1918 and 1969–1977, respectively). Shell d18Oar records were converted into d18Ow values using existing water temperature records. Summer d18Ow values, reconstructed from d18Oar of 1910–1918, showed a similar range as the summer d18Ow values for the reference time interval 1997–2007, whilst summer reconstructed d18Ow values for the time interval 1969–1977 were anomalously high. These high d18Ow values suggest that the river Meuse experienced severe summer droughts during the latter time interval. d18Ow values were then applied to calculate discharge values. It was attempted to estimate discharge from the reconstructed d18Ow values using the logarithmic relationship between d18Ow and discharge. A comparison of the calculated summer discharge results with observed discharge data showed that Meuse low-discharge events below a threshold value of 6 m3/s can be detected in the reconstructed d18Ow records, but true quantification remains problematic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite measurements and numerical forecast model reanalysis data are used to compute an updated estimate of the cloud radiative effect on the global multi-annual mean radiative energy budget of the atmosphere and surface. The cloud radiative cooling effect through reflection of shortwave radiation dominates over the longwave heating effect, resulting in a net cooling of the climate system of –21 Wm-2. The shortwave radiative effect of cloud is primarily manifest as a reduction in the solar radiation absorbed at the surface of -53 Wm-2. Clouds impact longwave radiation by heating the moist tropical atmosphere (up to around 40 Wm-2 for global annual means) while enhancing the radiative cooling of the atmosphere over other regions, in particular higher latitudes and sub-tropical marine stratocumulus regimes. While clouds act to cool the climate system during the daytime, the cloud greenhouse effect heats the climate system at night. The influence of cloud radiative effect on determining cloud feedbacks and changes in the water cycle are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six land surface models and five global hydrological models participate in a model intercomparison project (WaterMIP), which for the first time compares simulation results of these different classes of models in a consistent way. In this paper the simulation setup is described and aspects of the multi-model global terrestrial water balance are presented. All models were run at 0.5 degree spatial resolution for the global land areas for a 15-year period (1985-1999) using a newly-developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm year-1 (60,000 to 85,000 km3 year-1) and simulated runoff ranges from 290 to 457 mm year-1 (42,000 to 66,000 km3 year-1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically-based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between model are major sources of uncertainty. Climate change impact studies thus need to use not only multiple climate models, but also some other measure of uncertainty, (e.g. multiple impact models).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation period. It is found that both methods yield merged fields of better quality than the original radar field or fields obtained by OK of gauge data. The newly suggested KED formulation is shown to be beneficial, in particular in mountainous regions where the quality of the Swiss radar composite is comparatively low. An analysis of the Kriging variances shows that none of the methods tested here provides a satisfactory uncertainty estimate. A suitable variable transformation is expected to improve this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coarse spacing of automatic rain gauges complicates near-real- time spatial analyses of precipitation. We test the possibility of improving such analyses by considering, in addition to the in situ measurements, the spatial covariance structure inferred from past observations with a denser network. To this end, a statistical reconstruction technique, reduced space optimal interpolation (RSOI), is applied over Switzerland, a region of complex topography. RSOI consists of two main parts. First, principal component analysis (PCA) is applied to obtain a reduced space representation of gridded high- resolution precipitation fields available for a multiyear calibration period in the past. Second, sparse real-time rain gauge observations are used to estimate the principal component scores and to reconstruct the precipitation field. In this way, climatological information at higher resolution than the near-real-time measurements is incorporated into the spatial analysis. PCA is found to efficiently reduce the dimensionality of the calibration fields, and RSOI is successful despite the difficulties associated with the statistical distribution of daily precipitation (skewness, dry days). Examples and a systematic evaluation show substantial added value over a simple interpolation technique that uses near-real-time observations only. The benefit is particularly strong for larger- scale precipitation and prominent topographic effects. Small-scale precipitation features are reconstructed at a skill comparable to that of the simple technique. Stratifying the reconstruction method by the types of weather type classifications yields little added skill. Apart from application in near real time, RSOI may also be valuable for enhancing instrumental precipitation analyses for the historic past when direct observations were sparse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for consistent assimilation of satellite measurements for numerical weather prediction led operational meteorological centers to assimilate satellite radiances directly using variational data assimilation systems. More recently there has been a renewed interest in assimilating satellite retrievals (e.g., to avoid the use of relatively complicated radiative transfer models as observation operators for data assimilation). The aim of this paper is to provide a rigorous and comprehensive discussion of the conditions for the equivalence between radiance and retrieval assimilation. It is shown that two requirements need to be satisfied for the equivalence: (i) the radiance observation operator needs to be approximately linear in a region of the state space centered at the retrieval and with a radius of the order of the retrieval error; and (ii) any prior information used to constrain the retrieval should not underrepresent the variability of the state, so as to retain the information content of the measurements. Both these requirements can be tested in practice. When these requirements are met, retrievals can be transformed so as to represent only the portion of the state that is well constrained by the original radiance measurements and can be assimilated in a consistent and optimal way, by means of an appropriate observation operator and a unit matrix as error covariance. Finally, specific cases when retrieval assimilation can be more advantageous (e.g., when the estimate sought by the operational assimilation system depends on the first guess) are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In numerical weather prediction (NWP) data assimilation (DA) methods are used to combine available observations with numerical model estimates. This is done by minimising measures of error on both observations and model estimates with more weight given to data that can be more trusted. For any DA method an estimate of the initial forecast error covariance matrix is required. For convective scale data assimilation, however, the properties of the error covariances are not well understood. An effective way to investigate covariance properties in the presence of convection is to use an ensemble-based method for which an estimate of the error covariance is readily available at each time step. In this work, we investigate the performance of the ensemble square root filter (EnSRF) in the presence of cloud growth applied to an idealised 1D convective column model of the atmosphere. We show that the EnSRF performs well in capturing cloud growth, but the ensemble does not cope well with discontinuities introduced into the system by parameterised rain. The state estimates lose accuracy, and more importantly the ensemble is unable to capture the spread (variance) of the estimates correctly. We also find, counter-intuitively, that by reducing the spatial frequency of observations and/or the accuracy of the observations, the ensemble is able to capture the states and their variability successfully across all regimes.