25 resultados para Control measures
Resumo:
“Point and click” interactions remain one of the key features of graphical user interfaces (GUIs). People with motion-impairments, however, can often have difficulty with accurate control of standard pointing devices. This paper discusses work that aims to reveal the nature of these difficulties through analyses that consider the cursor’s path of movement. A range of cursor measures was applied, and a number of them were found to be significant in capturing the differences between able-bodied users and motion-impaired users, as well as the differences between a haptic force feedback condition and a control condition. The cursor measures found in the literature, however, do not make up a comprehensive list, but provide a starting point for analysing cursor movements more completely. Six new cursor characteristics for motion-impaired users are introduced to capture aspects of cursor movement different from those already proposed.
Resumo:
People with motion-impairments can often have difficulty with accurate control of standard pointing devices for computer input. The nature of the difficulties may vary, so to be most effective, methods of assisting cursor control must be suited to each user's needs. The work presented here involves a study of cursor trajectories as a means of assessing the requirements of motion-impaired computer users. A new cursor characteristic is proposed that attempts to capture difficulties with moving the cursor in a smooth trajectory. A study was conducted to see if haptic tunnels could improve performance in "point and click" tasks. Results indicate that the tunnels reduced times to target for those users identified by the new characteristic as having the most difficulty moving in a smooth trajectory. This suggests that cursor characteristics have potential applications in performing assessments of a user's cursor control capabilities which can then be used to determine appropriate methods of assistance.
Resumo:
Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.
Resumo:
Johne's disease in cattle is a contagious wasting disease caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's infection is characterised by a long subclinical phase and can therefore go undetected for long periods of time during which substantial production losses can occur. The protracted nature of Johne's infection therefore presents a challenge for both veterinarians and farmers when discussing control options due to a paucity of information and limited test performance when screening for the disease. The objectives were to model Johne's control decisions in suckler beef cattle using a decision support approach, thus implying equal focus on ‘end user’ (veterinarian) participation whilst still focusing on the technical disease modelling aspects during the decision support model development. The model shows how Johne's disease is likely to affect a herd over time both in terms of physical and financial impacts. In addition, the model simulates the effect on production from two different Johne's control strategies; herd management measures and test and cull measures. The article also provides and discusses results from a sensitivity analysis to assess the effects on production from improving the currently available test performance. Output from running the model shows that a combination of management improvements to reduce routes of infection and testing and culling to remove infected and infectious animals is likely to be the least-cost control strategy.
Resumo:
In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes.
Resumo:
A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness. We designed a closed-loop neuroprosthetic interface that measures bladder fullness and prevents spontaneous voiding episodes without the need for dorsal rhizotomy in a rat model. To obtain bladder sensory information, we implanted teased dorsal roots (rootlets) within the rat vertebral column into microchannel electrodes, which provided signal amplification and noise suppression. As long as they were attached to the spinal cord, these rootlets survived for up to 3 months and contained axons and blood vessels. Electrophysiological recordings showed that half of the rootlets propagated action potentials, with firing frequency correlated to bladder fullness. When the bladder became full enough to initiate spontaneous voiding, high-frequency/amplitude sensory activity was detected. Voiding was abolished using a high-frequency depolarizing block to the ventral roots. A ventral root stimulator initiated bladder emptying at low frequency and prevented unwanted contraction at high frequency. These data suggest that sensory information from the dorsal root together with a ventral root stimulator could form the basis for a closed-loop bladder neuroprosthetic. Copyright © 2013, American Association for the Advancement of Science
Resumo:
CBPP is an important transboundary disease in sub-Saharan Africa whose control is urgent. Participatory data collection involving 52 focus group discussions in 37 village clusters and key informant interviews, a cross-sectional study involving 232 households and a post-vaccination follow up involving 203 households was carried out in 2006-2007 in Narok South district of Kenya. This was to investigate knowledge, attitudes, perceptions and practices (KAPP) associated with control of CBPP as well as the adverse post-vaccination reactions in animals in order to advice the control policy. The community perceived trans-boundary CBPP threat to their cattle. They had traditional disease coping mechanisms and were conversant with CBPP prevention and control with 49.8% (95%CI: 42.8-56.7%) giving priority to CBPP control. However, 12.9% (95%CI: 9.0-18.1%) of pastoralists had no knowledge of any prevention method and 10.0% (95%CI: 6.5-14.7%) would not know what to do or would do nothing in the event of an outbreak. Although 43.5% (95%CI: 37.1-50.2%) of pastoralists were treating CBPP cases with antimicrobials, 62.5% (95%CI: 52.1-71.7%) of them doubted the effectiveness of the treatments. Pastoralists perceived vaccination to be the solution to CBPP but vaccination was irregular due to unavailability of the vaccine. Vaccination was mainly to control outbreaks rather than preventive and exhibited adverse post-vaccination reactions among 70.4% (95%CI: 63.6-76.5%) of herds and 3.8% (95%CI: 3.5-4.2%) of animals. Consequently, nearly 25.2% (95%CI: 18.5-33.2%) of pastoralists may resist subsequent vaccinations against CBPP. Pastoralists preferred CBPP vaccination at certain times of the year and that it is combined with other vaccinations. In conclusion, pastoralists were not fully aware of the preventive measures and interventions and post-vaccination reactions may discourage subsequent CBPP vaccinations. Consequently there is need for monitoring and management of post vaccination reactions and awareness creation on CBPP prevention and interventions and their merits and demerits. CBPP vaccine was largely unavailable to the pastoralists and the preference of the pastoralists was for vaccination at specified times and vaccine combinations which makes it necessary to avail the vaccine in conformity with the pastoralists preferences. In addition, planning vaccinations should involve pastoralists and neighbouring countries. As the results cannot be generalized, further studies on CBPP control methods and their effectiveness are recommended.
Resumo:
The large pine weevil, Hylobius abietis, is a serious pest of reforestation in northern Europe. However, weevils developing in stumps of felled trees can be killed by entomopathogenic nematodes applied to soil around the stumps and this method of control has been used at an operational level in the UK and Ireland. We investigated the factors affecting the efficacy of entomopathogenic nematodes in the control of the large pine weevil spanning 10 years of field experiments, by means of a meta-analysis of published studies and previously unpublished data. We investigated two species with different foraging strategies, the ‘ambusher’ Steinernema carpocapsae, the species most often used at an operational level, and the ‘cruiser’ Heterorhabditis downesi. Efficacy was measured both by percentage reduction in numbers of adults emerging relative to untreated controls and by percentage parasitism of developing weevils in the stump. Both measures were significantly higher with H. downesi compared to S. carpocapsae. General linear models were constructed for each nematode species separately, using substrate type (peat versus mineral soil) and tree species (pine versus spruce) as fixed factors, weevil abundance (from the mean of untreated stumps) as a covariate and percentage reduction or percentage parasitism as the response variable. For both nematode species, the most significant and parsimonious models showed that substrate type was consistently, but not always, the most significant variable, whether replicates were at a site or stump level, and that peaty soils significantly promote the efficacy of both species. Efficacy, in terms of percentage parasitism, was not density dependent.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.