22 resultados para Congenital anomalies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal autocorrelations of monthly mean total ozone anomalies over the 35–60°S and 35–60°N latitude bands reveal that anomalies established in the wintertime midlatitude ozone buildup persist (with photochemical decay) until the end of the following autumn, and then are rapidly erased once the next winter's buildup begins. The photochemical decay rate is found to be identical between the two hemispheres. High predictability of ozone through late summer exists based on the late-spring values. In the northern hemisphere, extending the 1979–2001 springtime ozone trend to other months through regression based on the seasonal persistence of anomalies captures the seasonality of the ozone trends remarkably well. In the southern hemisphere, the springtime trend only accounts for part of the summertime trends. There is a strong correlation between the ozone anomalies in northern hemisphere spring and those in the subsequent southern hemisphere spring, but not the converse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time-mean quasi-geostrophic potential vorticity equation of the atmospheric flow on isobaric surfaces can explicitly include an atmospheric (internal) forcing term of the stationary-eddy flow. In fact, neglecting some non-linear terms in this equation, this forcing can be mathematically expressed as a single function, called Empirical Forcing Function (EFF), which is equal to the material derivative of the time-mean potential vorticity. Furthermore, the EFF can be decomposed as a sum of seven components, each one representing a forcing mechanism of different nature. These mechanisms include diabatic components associated with the radiative forcing, latent heat release and frictional dissipation, and components related to transient eddy transports of heat and momentum. All these factors quantify the role of the transient eddies in forcing the atmospheric circulation. In order to assess the relevance of the EFF in diagnosing large-scale anomalies in the atmospheric circulation, the relationship between the EFF and the occurrence of strong North Atlantic ridges over the Eastern North Atlantic is analyzed, which are often precursors of severe droughts over Western Iberia. For such events, the EFF pattern depicts a clear dipolar structure over the North Atlantic; cyclonic (anticyclonic) forcing of potential vorticity is found upstream (downstream) of the anomalously strong ridges. Results also show that the most significant components are related to the diabatic processes. Lastly, these results highlight the relevance of the EFF in diagnosing large-scale anomalies, also providing some insight into their interaction with different physical mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the transient atmospheric response to midlatitude SST anomalies, a three-layer quasigeostrophic (QG) model coupled to a slab oceanic mixed layer in the North Atlantic is used. As diagnosed from a coupled run in perpetual winter conditions, the first two modes of SST variability are linked to the model North Atlantic Oscillation (NAO) and eastern Atlantic pattern (EAP), respectively, the dominant atmospheric modes in the Atlantic sector. The two SST anomaly patterns are then prescribed as fixed anomalous boundary conditions for the model atmosphere, and its transient responses are established from a large ensemble of simulations. In both cases, the tendency of the air–sea heat fluxes to damp the SST anomalies results in an anomalous diabatic heating of the atmosphere that, in turn, forces a baroclinic response, as predicted by linear theory. This initial response rapidly modifies the transient eddy activity and thus the convergence of eddy momentum and heat fluxes. The latter transforms the baroclinic response into a growing barotropic one that resembles the atmospheric mode that had created the SST anomaly in the coupled run and is thus associated with a positive feedback. The total adjustment time is as long as 3–4 months for the NAO-like response and 1–2 months for the EAP-like one. The positive feedback, in both cases, is dependent on the polarity of the SST anomaly, but is stronger in the NAO case, thereby contributing to its predominance at low frequency in the coupled system. However, the feedback is too weak to lead to an instability of the atmospheric modes and primarily results in an increase of their amplitude and persistence and a weakening of the heat flux damping of the SST anomaly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In projections of twenty-first century climate, Arctic sea ice declines and at the same time exhibits strong interannual anomalies. Here, we investigate the potential to predict these strong sea-ice anomalies under a perfect-model assumption, using the Max-Planck-Institute Earth System Model in the same setup as in the Coupled Model Intercomparison Project Phase 5 (CMIP5). We study two cases of strong negative sea-ice anomalies: a 5-year-long anomaly for present-day conditions, and a 10-year-long anomaly for conditions projected for the middle of the twenty-first century. We treat these anomalies in the CMIP5 projections as the truth, and use exactly the same model configuration for predictions of this synthetic truth. We start ensemble predictions at different times during the anomalies, considering lagged-perfect and sea-ice-assimilated initial conditions. We find that the onset and amplitude of the interannual anomalies are not predictable. However, the further deepening of the anomaly can be predicted for typically 1 year lead time if predictions start after the onset but before the maximal amplitude of the anomaly. The magnitude of an extremely low summer sea-ice minimum is hard to predict: the skill of the prediction ensemble is not better than a damped-persistence forecast for lead times of more than a few months, and is not better than a climatology forecast for lead times of two or more years. Predictions of the present-day anomaly are more skillful than predictions of the mid-century anomaly. Predictions using sea-ice-assimilated initial conditions are competitive with those using lagged-perfect initial conditions for lead times of a year or less, but yield degraded skill for longer lead times. The results presented here suggest that there is limited prospect of predicting the large interannual sea-ice anomalies expected to occur throughout the twenty-first century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to the role of the Atlantic meridional overturning circulation (AMOC) in ocean heat transport, AMOC variability is thought to play a role in climate variability on a wide range of time scales. This paper focuses on the potential role of the AMOC in climate variability on decadal time scales. Coupled and ocean-only general circulation models run in idealized geometries are utilized to study the relationships between decadal AMOC and buoyancy variability and determine whether the AMOC plays an active role in setting sea surface temperature on decadal time scales.DecadalAMOC variability is related to changes in the buoyancy field along the western boundary according to the thermal wind relation. Buoyancy anomalies originate in the upper ocean of the subpolar gyre and travel westward as baroclinic Rossby waves. When the buoyancy anomalies strike the western boundary, they are advected southward by the deep western boundary current, leading to latitudinally coherent AMOC variability. The AMOC is observed to respond passively to decadal buoyancy anomalies: although variability of the AMOC leads to meridional ocean heat transport anomalies, these transports are not responsible for creating the buoyancy anomalies in the subpolar gyre that drive AMOC variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient atmospheric response to interactive SST anomalies in the midlatitudes is investigated using a three-layer QG model coupled in perpetual winter conditions to a slab oceanic mixed layer in the North Atlantic. The SST anomalies are diagnosed from a coupled run and prescribed as initial conditions, but are free to evolve. The initial evolution of the atmospheric response is similar to that obtained with a prescribed SST anomaly, starting as a quasi-linear baroclinic and then quickly evolving into a growing equivalent barotropic one. Because of the heat flux damping, the SST anomaly amplitude slowly decreases, albeit with little change in pattern. Correspondingly, the atmospheric response only increases until it reaches a maximum amplitude after about 1–3.5 months, depending on the SST anomaly considered. The response is similar to that at equilibrium in the fixed SST case, but it is 1.5–2 times smaller, and then slowly decays away.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series of global and regional mean Surface Air Temperature (SAT) anomalies are a common metric used to estimate recent climate change. Various techniques can be used to create these time series from meteorological station data. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques relative to the reanalysis reference. Kriging techniques provided the smallest errors in estimates of Arctic anomalies and Simple Kriging was often the best kriging method in this study, especially over sea ice. A linear interpolation technique had, on average, Root Mean Square Errors (RMSEs) up to 0.55 K larger than the two kriging techniques tested. Non-interpolating techniques provided the least representative anomaly estimates. Nonetheless, they serve as useful checks for confirming whether estimates from interpolating techniques are reasonable. The interaction of meteorological station coverage with estimation techniques between 1850 and 2011 was simulated using an ensemble dataset comprising repeated individual years (1979-2011). All techniques were found to have larger RMSEs for earlier station coverages. This supports calls for increased data sharing and data rescue, especially in sparsely observed regions such as the Arctic.