26 resultados para Conditional moments
Resumo:
We consider the finite sample properties of model selection by information criteria in conditionally heteroscedastic models. Recent theoretical results show that certain popular criteria are consistent in that they will select the true model asymptotically with probability 1. To examine the empirical relevance of this property, Monte Carlo simulations are conducted for a set of non–nested data generating processes (DGPs) with the set of candidate models consisting of all types of model used as DGPs. In addition, not only is the best model considered but also those with similar values of the information criterion, called close competitors, thus forming a portfolio of eligible models. To supplement the simulations, the criteria are applied to a set of economic and financial series. In the simulations, the criteria are largely ineffective at identifying the correct model, either as best or a close competitor, the parsimonious GARCH(1, 1) model being preferred for most DGPs. In contrast, asymmetric models are generally selected to represent actual data. This leads to the conjecture that the properties of parameterizations of processes commonly used to model heteroscedastic data are more similar than may be imagined and that more attention needs to be paid to the behaviour of the standardized disturbances of such models, both in simulation exercises and in empirical modelling.
Resumo:
This study proposes a utility-based framework for the determination of optimal hedge ratios (OHRs) that can allow for the impact of higher moments on hedging decisions. We examine the entire hyperbolic absolute risk aversion family of utilities which include quadratic, logarithmic, power, and exponential utility functions. We find that for both moderate and large spot (commodity) exposures, the performance of out-of-sample hedges constructed allowing for nonzero higher moments is better than the performance of the simpler OLS hedge ratio. The picture is, however, not uniform throughout our seven spot commodities as there is one instance (cotton) for which the modeling of higher moments decreases welfare out-of-sample relative to the simpler OLS. We support our empirical findings by a theoretical analysis of optimal hedging decisions and we uncover a novel link between OHRs and the minimax hedge ratio, that is the ratio which minimizes the largest loss of the hedged position. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark
Resumo:
The evaluation of investment fund performance has been one of the main developments of modern portfolio theory. Most studies employ the technique developed by Jensen (1968) that compares a particular fund's returns to a benchmark portfolio of equal risk. However, the standard measures of fund manager performance are known to suffer from a number of problems in practice. In particular previous studies implicitly assume that the risk level of the portfolio is stationary through the evaluation period. That is unconditional measures of performance do not account for the fact that risk and expected returns may vary with the state of the economy. Therefore many of the problems encountered in previous performance studies reflect the inability of traditional measures to handle the dynamic behaviour of returns. As a consequence Ferson and Schadt (1996) suggest an approach to performance evaluation called conditional performance evaluation which is designed to address this problem. This paper utilises such a conditional measure of performance on a sample of 27 UK property funds, over the period 1987-1998. The results of which suggest that once the time varying nature of the funds beta is corrected for, by the addition of the market indicators, the average fund performance show an improvement over that of the traditional methods of analysis.
Resumo:
A standard CDMA system is considered and an extension of Pearson's results is used to determine the density function of the interference. The method is shown to work well in some cases, but not so in others. However this approach can be useful in further determining the probability of error of the system with minimal computational requirements.
Resumo:
In a recent paper, Mason et al. propose a reliability test of ensemble forecasts for a continuous, scalar verification. As noted in the paper, the test relies on a very specific interpretation of ensembles, namely, that the ensemble members represent quantiles of some underlying distribution. This quantile interpretation is not the only interpretation of ensembles, another popular one being the Monte Carlo interpretation. Mason et al. suggest estimating the quantiles in this situation; however, this approach is fundamentally flawed. Errors in the quantile estimates are not independent of the exceedance events, and consequently the conditional exceedance probabilities (CEP) curves are not constant, which is a fundamental assumption of the test. The test would reject reliable forecasts with probability much higher than the test size.
Resumo:
BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.
Resumo:
It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.
Resumo:
We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.