20 resultados para Concha de Abanico
Resumo:
Cistus is a plant genus traditionally used in folk medicine as remedy for several microbial disorders and infections. The abundance of Cistus spp. in the Iberian Peninsula together with their ability to renew after wildfire contribute to their profitability as suppliers of functional ingredients. The aim of this study was to provide a comprehensive characterization of the volatile profile of different Cistus plants grown in Spain:Cistus ladanifer L., Cistus albidus L., Cistus salviifolius L., and Cistus clusii Dunal (the latter has not been studied before). A system combining headspace solid-phase microextraction and gas chromatography coupled to mass spectrometry (HS-SPME-GC–MS) was implemented; thereby, the volatile compounds were extracted and analyzed in a fast, reliable and environment-friendly way. A total of 111 volatile compounds were identified, 28 of which were reported in Cistus for the first time. The most abundant components of the samples (mono and sesquiterpenes) have been previously reported as potent antimicrobial agents. Therefore, this work reveals the potential use of the Cistus spp. studied as natural sources of antimicrobial compounds for industrial production of cosmeceuticals, among other applications.
Resumo:
Proteins from dromedary camel milk (CM) produced in Europe were separated and quantified by capillary electrophoresis (CE). CE analysis showed that camel milk lacks b-lactoglobulin and consists of high concentration of a-lactalbumin (2.01 ± 0.02 mg mL-1), lactoferrin (1.74 ± 0.06 mg mL-1) and serum albumin (0.46 ± 0.01 mg mL-1 ). Among caseins, the concentration of b-casein (12.78 ± 0.92 mg mL-1) was found the highest followed by a-casein (2.89 ± 0.29 mg mL-1) while k-casein represented only minor amount (1.67 ± 0.01 mg mL-1). These results were in agreement with sodium dodecyl sulphatepolyacrylamide gel electrophoresis patterns. Overall, CE offers a quick and reliable method for the determination of major CM proteins, which may be responsible for the many nutritional and health properties of CM.
Resumo:
Sherry wine has characteristic taste and aroma, different from other wine-based alcoholic beverages. This paper reports a study of the non-volatile, low-molecular weight compounds found in sherry and related alcoholic beverages that may contribute to taste. Compounds analysed included free amino acids, organic acids, sugars and small peptides (linear and cyclic). A series of seven diketopiperazines (cyclic dipeptides) namely, cyclo(Leu-Leu), cyclo(Pro-Leu), cyclo(Pro-Ile), cyclo(Pro-Met), cyclo( Pro-Val), cyclo(Pro-Pro) and cyclo(Val-Ala) were identified for the first time in sherry. Although traces were found in some other alcoholic beverages, levels were low compared with sherry. The base wine used in the sherry production had only traces of diketopiperazines, indicating that the casking stage of sherry production might be responsible for their formation.
Resumo:
The use of asparaginase, an enzyme that hydrolyses the acrylamide precursor asparagine into aspartic acid and ammonia, is seen as a promising procedure to mitigate the formation of the potential human carcinogen acrylamide in food products, without compromising desirable sensory qualities. This study examines the effect of asparaginase treatment on the asparagine and aspartic acid content of green coffee beans prior to roasting as well as the impact on the formation of acrylamide and thermally generated aroma compounds in roasted coffee
Resumo:
Strategies proposed for reducing the formation of the suspected carcinogen acrylamide in cooked foods often rely on a reduction in the extent of the Maillard reaction, in which acrylamide is formed from the reaction between asparagine and reducing sugars. However, the Maillard reaction also provides desirable sensory attributes of cooked foods. Mitigation procedures that modify the Maillard reaction may negatively affect flavour and colour. The use of asparaginase to convert asparagine to aspartic acid may provide a means to reduce acrylamide formation, while maintaining sensory quality. This review collates research on the use of enzymes, asparaginase in particular, to mitigate acrylamide formation. Asparaginase is a powerful tool for the food industry and it is likely that its use will increase. However, the potential adverse effects of asparaginase treatment on sensory properties of cooked foods and the need to achieve sufficient enzyme–substrate contact remain areas for future research.