37 resultados para Computational learning theory
Resumo:
The emergent requirements for effective e-learning calls for a paradigm shift for instructional design. Constructivist theory and semiotics offer a sound underpinning to enable such revolutionary change by employing the concepts of Learning Objects. E-learning guidelines adopted by the industry have led successfully to the development of training materials. Inadequacy and deficiency of those methods for Higher Education have been identified in this paper. Based on the best practice in industry and our empirical research, we present an instructional design model with practical templates for constructivist learning.
Resumo:
Researchers at the University of Reading have developed over many years some simple mobile robots that explore an environment they perceive through simple ultrasonic sensors. Information from these sensors has allowed the robots to learn the simple task of moving around while avoiding dynamic obstacles using a static set of fuzzy automata, the choice of which has been criticised, due to its arbitrary nature. This paper considers how a dynamic set of automata can overcome this criticism. In addition, a new reinforcement learning function is outlined which is both scalable to different numbers and types of sensors. The innovations compare successfully with earlier work.
Resumo:
An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.
Resumo:
Twenty first century challenges facing agriculture include climate change, threats to food security for a growing population and downward economic pressures on rural livelihoods. Addressing these challenges will require innovation in extension theory, policy and education, at a time when the dominance of the state in the provision of knowledge and information services to farmers and rural entrepreneurs continues to decline. This paper suggests that extension theory is catching up with and helping us to understand innovative extension practice, and therefore provides a platform for improving rural development policies and strategies. Innovation is now less likely to be spoken of as something to be passed on to farmers, than as a continuing process of creativity and adaptation that can be nurtured and sustained. Innovation systems and innovation platforms are concepts that recognise the multiple factors that lead to farmers’ developing, adapting and applying new ideas and the importance of linking all actors in the value chain to ensure producers can access appropriate information and advice for decision making at all stages in the production process. Concepts of social learning, group development and solidarity, social capital, collective action and empowerment all help to explain and therefore to apply more effectively group extension approaches in building confidence and sustaining innovation. A challenge facing educators is to ensure the curricula for aspiring extension professionals in our higher education institutions are regularly reviewed and keep up with current and future developments in theory, policy and practice.
Resumo:
The ‘action observation network’ (AON), which is thought to translate observed actions into motor codes required for their execution, is biologically tuned: it responds more to observation of human, than non-human, movement. This biological specificity has been taken to support the hypothesis that the AON underlies various social functions, such as theory of mind and action understanding, and that, when it is active during observation of non-human agents like humanoid robots, it is a sign of ascription of human mental states to these agents. This review will outline evidence for biological tuning in the AON, examining the features which generate it, and concluding that there is evidence for tuning to both the form and kinematic profile of observed movements, and little evidence for tuning to belief about stimulus identity. It will propose that a likely reason for biological tuning is that human actions, relative to non-biological movements, have been observed more frequently while executing corresponding actions. If the associative hypothesis of the AON is correct, and the network indeed supports social functioning, sensorimotor experience with non-human agents may help us to predict, and therefore interpret, their movements.
Resumo:
The problem of adjusting the weights (learning) in multilayer feedforward neural networks (NN) is known to be of a high importance when utilizing NN techniques in various practical applications. The learning procedure is to be performed as fast as possible and in a simple computational fashion, the two requirements which are usually not satisfied practically by the methods developed so far. Moreover, the presence of random inaccuracies are usually not taken into account. In view of these three issues, an alternative stochastic approximation approach discussed in the paper, seems to be very promising.
Resumo:
There is substantial research interest in tutor feedback and students’ perception and use of such feedback. This paper considers some of the major issues raised in relation to tutor feedback and student learning. We explore some of the current feedback drivers, most notably the need for feedback to move away from simply a monologue from a tutor to a student to a valuable tutor–student dialogue. In relation to moving feedback forward the notions of self regulation, dialogue and social learning are explored and then considered in relation to how such theory can translate into practice. The paper proposes a framework (GOALS) as a tool through which tutors can move theory into practice with the aim of improving student learning from feedback.
Resumo:
By eliminating the short range negative divergence of the Debye–Hückel pair distribution function, but retaining the exponential charge screening known to operate at large interparticle separation, the thermodynamic properties of one-component plasmas of point ions or charged hard spheres can be well represented even in the strong coupling regime. Predicted electrostatic free energies agree within 5% of simulation data for typical Coulomb interactions up to a factor of 10 times the average kinetic energy. Here, this idea is extended to the general case of a uniform ionic mixture, comprising an arbitrary number of components, embedded in a rigid neutralizing background. The new theory is implemented in two ways: (i) by an unambiguous iterative algorithm that requires numerical methods and breaks the symmetry of cross correlation functions; and (ii) by invoking generalized matrix inverses that maintain symmetry and yield completely analytic solutions, but which are not uniquely determined. The extreme computational simplicity of the theory is attractive when considering applications to complex inhomogeneous fluids of charged particles.
Resumo:
Spiking neural networks are usually limited in their applications due to their complex mathematical models and the lack of intuitive learning algorithms. In this paper, a simpler, novel neural network derived from a leaky integrate and fire neuron model, the ‘cavalcade’ neuron, is presented. A simulation for the neural network has been developed and two basic learning algorithms implemented within the environment. These algorithms successfully learn some basic temporal and instantaneous problems. Inspiration for neural network structures from these experiments are then taken and applied to process sensor information so as to successfully control a mobile robot.
Resumo:
We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.
Resumo:
Top Down Induction of Decision Trees (TDIDT) is the most commonly used method of constructing a model from a dataset in the form of classification rules to classify previously unseen data. Alternative algorithms have been developed such as the Prism algorithm. Prism constructs modular rules which produce qualitatively better rules than rules induced by TDIDT. However, along with the increasing size of databases, many existing rule learning algorithms have proved to be computational expensive on large datasets. To tackle the problem of scalability, parallel classification rule induction algorithms have been introduced. As TDIDT is the most popular classifier, even though there are strongly competitive alternative algorithms, most parallel approaches to inducing classification rules are based on TDIDT. In this paper we describe work on a distributed classifier that induces classification rules in a parallel manner based on Prism.
Resumo:
Despite many decades investigating scalp recordable 8–13-Hz (alpha) electroencephalographic activity, no consensus has yet emerged regarding its physiological origins nor its functional role in cognition. Here we outline a detailed, physiologically meaningful, theory for the genesis of this rhythm that may provide important clues to its functional role. In particular we find that electroencephalographically plausible model dynamics, obtained with physiological admissible parameterisations, reveals a cortex perched on the brink of stability, which when perturbed gives rise to a range of unanticipated complex dynamics that include 40-Hz (gamma) activity. Preliminary experimental evidence, involving the detection of weak nonlinearity in resting EEG using an extension of the well-known surrogate data method, suggests that nonlinear (deterministic) dynamics are more likely to be associated with weakly damped alpha activity. Thus rather than the “alpha rhythm” being an idling rhythm it may be more profitable to conceive it as a readiness rhythm.
Resumo:
This article explores the problematic nature of the label “home ownership” through a case study of the English model of shared ownership, one of the methods used by the UK government to make home ownership affordable. Adopting a legal and socio-legal analysis, the article considers whether shared ownership is capable of fulfilling the aspirations households have for home ownership. To do so, the article considers the financial and nonfinancial meanings attached to home ownership and suggests that the core expectation lies in ownership of the value. The article demonstrates that the rights and responsibilities of shared owners are different in many respects from those of traditional home owners, including their rights as regards ownership of the value. By examining home ownership through the lens of shared ownership the article draws out lessons of broader significance to housing studies. In particular, it is argued that shared ownership shows the limitations of two dichotomies commonly used in housing discourse: that between private and social housing; and the classification of tenure between owner-occupiers and renters. The article concludes that a much more nuanced way of referring to home ownership is required, and that there is a need for a change of expectations amongst consumers as to what sharing ownership means.