31 resultados para Complex environment
Resumo:
Navigating cluttered indoor environments is a difficult problem in indoor service robotics. The Acroboter concept, a novel approach to indoor locomotion, represents unique opportunity to avoid obstacles in indoor environments by navigating the ceiling plane. This mode of locomotion requires the ability to accurately detect obstacles, and plan 3D trajectories through the environment. This paper presents the development of a resilient object tracking system, as well as a novel approach to generating 3D paths suitable for such robot configurations. Distributed human-machine interfacing allowing simulation previewing of actions is also considered in the developed system architecture.
Resumo:
Retinal blurring resulting from the human eye's depth of focus has been shown to assist visual perception. Infinite focal depth within stereoscopically displayed virtual environments may cause undesirable effects, for instance, objects positioned at a distance in front of or behind the observer's fixation point will be perceived in sharp focus with large disparities thereby causing diplopia. Although published research on incorporation of synthetically generated Depth of Field (DoF) suggests that this might act as an enhancement to perceived image quality, no quantitative testimonies of perceptional performance gains exist. This may be due to the difficulty of dynamic generation of synthetic DoF where focal distance is actively linked to fixation distance. In this paper, such a system is described. A desktop stereographic display is used to project a virtual scene in which synthetically generated DoF is actively controlled from vergence-derived distance. A performance evaluation experiment on this system which involved subjects carrying out observations in a spatially complex virtual environment was undertaken. The virtual environment consisted of components interconnected by pipes on a distractive background. The subject was tasked with making an observation based on the connectivity of the components. The effects of focal depth variation in static and actively controlled focal distance conditions were investigated. The results and analysis are presented which show that performance gains may be achieved by addition of synthetic DoF. The merits of the application of synthetic DoF are discussed.
Resumo:
The Agri-Environment Footprint Index (AFI) has been developed as a generic methodology to assess changes in the overall environmental impacts from agriculture at the farm level and to assist in the evaluation of European agri-environmental schemes (AES). The methodology is based on multicriteria analysis (MCA) and involves stakeholder participation to provide a locally customised evaluation based on weighted environmental indicators. The methodology was subjected to a feasibility assessment in a series of case studies across the EU. The AFI approach was able to measure significant differences in environmental status between farms that participated in an AES and nonparticipants. Wider environmental concerns, beyond the scheme objectives, were also considered in some case studies and the benefits for identification of unintentional (and often beneficial) impacts of AESs are presented. The participatory approach to AES valuation proved efficient in different environments and administrative contexts. The approach proved to be appropriate for environmental evaluation of complex agri-environment systems and can complement any evaluation conducted under the Common Monitoring and Evaluation Framework. The applicability of the AFI in routine monitoring of AES impacts and in providing feedback to improve policy design is discussed.
Resumo:
Innovation in the built environment involves multiple actors with diverse motivations. Policy-makers find it difficult to promote changes that require cooperation from these numerous and dispersed actors and to align their sometimes divergent interests. Established research traditions on the economics and management of innovation pay only limited attention to stakeholder choices, engagement and motivation. This paper reviews the insights that emerge as research in these traditions comes into contact with work on innovation from sociological and political perspectives. It contributes by highlighting growing areas of research on user involvement in complex innovation, collective action, distributed innovation and transition management. To differing extents, these provide approaches to incorporate the motivations of different actors into theoretical understanding. These indicate new directions for research that promise to enrich understanding of innovation.
Resumo:
Developing high-quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini-reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth-atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub-disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large-scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions.
Resumo:
This paper presents a numerical study of urban air-flow for a group of five buildings that is located at the University of Reading in the United Kingdom. The airflow around these buildings has been simulated by using ANSYS CFD software package. In this study, the association between certain architectural forms: a street canyon, a semi-closure, and a courtyard-like space in a low-rise building complex, and the wind environment were investigated. The analysis of CFD results has provided detailed information on the wind patterns of these urban built forms. The numerical results have been compared with the experimental measurements within the building complex. The observed characteristics of urban wind pattern with respect to the built structures are presented as a guideline. This information is needed for the design and/or performance assessments of systems such as passive and low energy design approach, a natural or hybrid ventilation, and passive cooling. Also, the knowledge of urban wind patterns allows us to develop better design options for the application of renewable energy technologies within urban environment.
Resumo:
Relations with the environment are key to the ways in which people pursue their dwelling practices. The complex processes of globalisation challenge the isolation of rural groups, consequently affecting their perception and use of the environment. One such place where this can be seen is the Kelabit Highlands of northern Sarawak (Malaysian Borneo), where the recent arrival of commercial logging has allowed local people to make wider connections via the logging roads. Cultural and historic traditions are reconstituted in the light of new material relations with a dynamic environment, which can be seen reflected in changing customs of housebuilding.
Resumo:
The waste materials generated in the nuclear fuel cycle are very varied,ranging from the tailings arising from mining and processing uranium ore, depleted uranium in a range of chemical forms, to a range of process wastes of differing activities and properties. Indeed, the wastes generated are intimately linked to the options selected in operating the nuclear fuel cycle, most obviously to the management of spent fuel. An open fuel cycle implies the disposal of highly radioactive spent fuel, whereas a closed fuel cycle generates a complex array of waste streams. On the other hand, a closed fuel cycle offers options for waste management, for example reduction in highly active waste volume, decreased radiotoxicity, and removal of fissile material. Many technological options have been proposed or explored, and each brings its own particular mix of wastes and environmental challenges.
Resumo:
New monometallic complex salts of the form X-2[M(L)(2)] [M = Ni2+, X = (CH3)(2)NH2+(1); M = Ni2+, X = (CH3)(4)N+ (2); M = Ni2+, X = (C2H5)(4)N+(3); M = Ni2+, X = (C3H7)(4)N+(4); M = Ni2+; X = (C6H13)(4)N+) (5); M = Pd2+,X = (CH3)(2)NH2+(6); M = Pd2+, X= (C2H5)(4)N+(7); M = Pd2+, X= (C3H7)(4)N+(8); M = Pd2+, X = (C6H13)(4)N+ (9); M = Pt2+, X = (CH3)(2)NH2+(10); L = p-tolylsulfonyldithiocarbimate (CH3C6H4SO2N=CS22 )] have been prepared and characterized by elemental analysis, IR, H-1 and C-13 NMR and UV-Vis spectroscopy; 1, 3, 4 and 5 by X-ray crystallography. In 1, 3, 4 and 5, the Ni atom is four coordinate with a square planar environment being bonded to four sulfur atoms from two bidentate ligands. All the salts are weakly conducting (sigma(rt) = 10 (7) to 10 (14) Scm (1)) because of the lack of significant S center dot center dot center dot S intermolecular interactions between complex anions [M(L)(2)](2) in the solid state however, they show behavior of semiconductors in the temperature range 353-453 K. All the Pd(II) and Pt(II) salts exhibited phtotolumeniscent emissions near visible region in solution at room temperature.
Resumo:
A new tetranuclear complex, [Cu4L4](ClO4)4·2H2O (1), has been synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligand (2E,3E)-3-(2-aminopropylimino) butan-2-one oxime (HL). Single-crystal X-ray diffraction studies reveal that complex 1 consists of a Cu4(NO)4 core where the four copper(II) centers having square pyramidal environment are arranged in a distorted tetrahedral geometry. They are linked together by a rare bridging mode (μ3-η1,η2,η1) of oximato ligands. Analysis of magnetic susceptibility data indicates moderate antiferromagnetic (J1 = −48 cm−1, J2 = −40 cm−1 and J3 = −52 cm−1) exchange interaction through σ-superexchange pathways (in-plane bridging) of the oxime group. Theoretical calculations based on DFT technique have been used to obtain the energy states of different spin configurations and estimate the coupling constants and to understand the exact magnetic exchange pathways.
Resumo:
A tetranuclear Cu(II) complex [Cu4L4(H2O)4](ClO4)4 has been synthesized using the terdentate Schiff base 2-(pyridine-2-yliminomethyl)-phenol (HL) (the condensation product of salicylaldehyde and 2-aminopyridine) and copper perchlorate. Chemical characterizations such as IR and UV/Vis of the complex have been carried out. A single-crystal diffraction study shows that the complex contains a nearly planar tetranuclear core containing four copper atoms, which occupy four equivalent five-coordinate sites with a square pyramidal environment. Magnetic measurements have been carried out over the temperature range 2–300K and with 100Oe field strengths. Analysis of magnetic susceptibility data indicates a strong antiferromagnetic (J1=−638cm−1) exchange interaction between diphenoxo-bridged Cu(II) centers and a moderate antiferromagnetic (J2=−34cm−1) interaction between N–C–N bridged Cu(II) centers. Magnetic exchange interactions (J’s) are also discussed on the basis of a computational study using DFT methodology. The spin density distribution (singlet ground state) is calculated to visualize the effect of delocalization of spin density through bridging groups.
Resumo:
This collection of original research and review articles and has been designed with the joint aims of inspiring future work and of reminding environmental economists and researchers from other disciplines that looking for similarities and common features in their studies is more important than magnifying their differences. It is also suitable for use as a postgraduate text. The volume reflects the endeavour of mainstream economic thought to include, amongst its chief concerns, the study of all complex interactions between economies and natural space. It also documents efforts made by economists and other scientists to study the complex phenomenon of individual and collective decision making when faced with problems linking economic activity with the environment. Presenting a pluralistic view of approaches and methodologies, rather than an exhaustive list of topics of interest to environmental scientists, the editors have brought together innovative contributions that can be read as self-contained pieces of work.
Resumo:
Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.
Resumo:
1. Agri-environment schemes remain a controversial approach to reversing biodiversity losses, partly because the drivers of variation in outcomes are poorly understood. In particular, there is a lack of studies that consider both social and ecological factors. 2. We analysed variation across 48 farms in the quality and biodiversity outcomes of agri-environmental habitats designed to provide pollen and nectar for bumblebees and butterflies or winter seed for birds. We used interviews and ecological surveys to gather data on farmer experience and understanding of agri-environment schemes, and local and landscape environmental factors. 3. Multimodel inference indicated social factors had a strong impact on outcomes and that farmer experiential learning was a key process. The quality of the created habitat was affected positively by the farmer’s previous experience in environmental management. The farmer’s confidence in their ability to carry out the required management was negatively related to the provision of floral resources. Farmers with more wildlife-friendly motivations tended to produce more floral resources, but fewer seed resources. 4. Bird, bumblebee and butterfly biodiversity responses were strongly affected by the quantity of seed or floral resources. Shelter enhanced biodiversity directly, increased floral resources and decreased seed yield. Seasonal weather patterns had large effects on both measures. Surprisingly, larger species pools and amounts of semi-natural habitat in the surrounding landscape had negative effects on biodiversity, which may indicate use by fauna of alternative foraging resources. 5. Synthesis and application. This is the first study to show a direct role of farmer social variables on the success of agri-environment schemes in supporting farmland biodiversity. It suggests that farmers are not simply implementing agri-environment options, but are learning and improving outcomes by doing so. Better engagement with farmers and working with farmers who have a history of environmental management may therefore enhance success. The importance of a number of environmental factors may explain why agri-environment outcomes are variable, and suggests some – such as the weather – cannot be controlled. Others, such as shelter, could be incorporated into agri-environment prescriptions. The role of landscape factors remains complex and currently eludes simple conclusions about large-scale targeting of schemes.