101 resultados para Combines
Resumo:
Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.
Resumo:
We present here an indicator of soil quality that evaluates soil ecosystem services through a set of 5 subindicators, and further combines them into a single general Indicator of Soil Quality (GISQ). We used information derived from 54 properties commonly used to describe the multifaceted aspects of soil quality. The design and calculation of the indicators were based on sequences of multivariate analyses. Subindicators evaluated the physical quality, chemical fertility, organic matter stocks, aggregation and morphology of the upper 5 cm of soil and the biodiversity of soil macrofauna. A GISQ combined the different subindicators providing a global assessment of soil quality. Research was conducted in two hillside regions of Colombia and Nicaragua, with similar types of land use and socio-economic context. However, soil and climatic conditions differed significantly. In Nicaragua, soil quality was assessed at 61 points regularly distributed 200 m apart on a regular grid across the landscape. In Colombia, 8 plots representing different types of land use were arbitrarily chosen in the landscape and intensively sampled. Indicators that were designed in the Nicaragua site were further applied to the Colombian site to test for their applicability. In Nicaragua, coffee plantations, fallows, pastures and forest had the highest values of GISQ (1.00; 0.80; 0.78 and 0.77, respectively) while maize crops and eroded soils (0.19 and 0.10) had the lowest values. Examination of subindicator values allowed the separate evaluation of different aspects of soil quality: subindicators of organic matter, aggregation and morphology and biodiversity of macrofauna had the maximum values in coffee plantations (0.89; 0.72 and 0.56, respectively on average) while eroded soils had the lowest values for these indicators (0.10; 0.31 and 0.33, respectively). Indicator formulae derived from information gained at the Nicaraguan sites were not applicable to the Colombian situation and site-specific constants were calculated. This indicator allows the evaluation of soil quality and facilitates the identification of problem areas through the individual values of each subindicator. It allows monitoring of change through time and can guide the implementation of soil restoration technologies. Although GISQ formulae computed on a set of data were only valid at a regional scale, the methodology used to create these indices can be applied everywhere.
Resumo:
We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.
Resumo:
We have developed a new method for the analysis of voids in proteins (defined as empty cavities not accessible to solvent). This method combines analysis of individual discrete voids with analysis of packing quality. While these are different aspects of the same effect, they have traditionally been analysed using different approaches. The method has been applied to the calculation of total void volume and maximum void size in a non-redundant set of protein domains and has been used to examine correlations between thermal stability and void size. The tumour-suppressor protein p53 has then been compared with the non-redundant data set to determine whether its low thermal stability results from poor packing. We found that p53 has average packing, but the detrimental effects of some previously unexplained mutations to p53 observed in cancer can be explained by the creation of unusually large voids. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Accelerated failure time models with a shared random component are described, and are used to evaluate the effect of explanatory factors and different transplant centres on survival times following kidney transplantation. Different combinations of the distribution of the random effects and baseline hazard function are considered and the fit of such models to the transplant data is critically assessed. A mixture model that combines short- and long-term components of a hazard function is then developed, which provides a more flexible model for the hazard function. The model can incorporate different explanatory variables and random effects in each component. The model is straightforward to fit using standard statistical software, and is shown to be a good fit to the transplant data. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
There is growing evidence that, rather than maximizing energy intake subject to constraints, many animals attempt to regulate intake of multiple nutrients independently. In the complex diets of animals such as herbivores, the consumption of nutritionally imbalanced foods is sometimes inevitable, forcing trade-offs between eating too much of nutrients present in the foods in relative excess against too little of those in deficit. Such situations are not adequately represented in existing formulations of foraging theory. Here we provide the necessary theory to fit this case, using an approach that combines state-space models of nutrition with Tilman's models of resource exploitation (Tilman 1982, Resource Competition and Community Structure, Princeton: Princeton University Press). Our approach was to construct a smooth fitness landscape over nutrient space, centred on a 'target' intake at which no fitness cost is incurred, and this leads to a natural classification of the simple possible fitness landscapes based on Taylor series approximations of landscape shape. We next examined how needs for multiple nutrients can be assessed experimentally using direct measures of animal performance as the common currency, so that the nutritional strategies of animals can be mapped on to the performance surface, including the position of regulated points of intake and points of nutrient balance when fed suboptimal foods. We surveyed published data and conducted an experiment to map out the performance landscape of a generalist leaf-feeding caterpillar, Spodoptera littoralis. (C) 2004 Tire Association for the Study of Animal Behaviour. Poblished by Elsevier Ltd. All rights reserved.
Resumo:
Electrospinning is a method used to produce nanoscale to microscale sized polymer fibres. In this study we electrospin 1:1 blends of deuterated and hydrogenated atactic- Polystyrene from N,N-Dimethylformamide for small angle neutron scattering experiments in order to analyse the chain conformation in the electrospun fibres. Small angle neutron scattering was carried out on randomly orientated fibre mats obtained using applied voltages of 10kV-15kV and needle tip to collector distances of 20cm and 30cm. Fibre diameters varied from 3μm – 20μm. Neutron scattering data from fibre samples were compared with bulk samples of the same polymer blend. The scattering data indicates that there are pores and nanovoiding present in the fibres; this was confirmed by scanning electron microscopy. A model that combines the scattering from the pores and the labelled polymer chains was used to extract values for the radius of gyration. The radius of gyration in the fibres is found to vary little with the applied voltage, but varies with the initial solution concentration and fibre diameter. The values for the radius of gyration in the fibres are broadly equivalent to that of the bulk state.
Resumo:
The contribution of retinal flow (RF), extraretinal (ER), and egocentric visual direction (VD) information in locomotor control was explored. First, the recovery of heading from RF was examined when ER information was manipulated; results confirmed that ER signals affect heading judgments. Then the task was translated to steering curved paths, and the availability and veracity of VD were manipulated with either degraded or systematically biased RE Large steering errors resulted from selective manipulation of RF and VD, providing strong evidence for the combination of RF, ER, and VD. The relative weighting applied to RF and VD was estimated. A point-attractor model is proposed that combines redundant sources of information for robust locomotor control with flexible trajectory planning through active gaze.
Resumo:
In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Computer vision applications generally split their problem into multiple simpler tasks. Likewise research often combines algorithms into systems for evaluation purposes. Frameworks for modular vision provide interfaces and mechanisms for algorithm combination and network transparency. However, these don’t provide interfaces efficiently utilising the slow memory in modern PCs. We investigate quantitatively how system performance varies with different patterns of memory usage by the framework for an example vision system.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper presents a new strategy for controlling rigid-robot manipulators in the presence of parametric uncertainties or un-modelled dynamics. The strategy combines an adaptation law with a well known robust controller proposed by Spong, which is derived using Lyapunov's direct method. Although the tracking problem of manipulators has been successfully solved with different strategies, there are some conditions under which their efficiency is limited. Specifically, their performance decreases when unknown loading masses or model disturbances are introduced. The aim of this work is to show that the proposed strategy performs better than existing algorithms, as verified with real-time experimental results with a Puma-560 robot. (c) 2006 Elsevier Ltd. All rights reserved.