33 resultados para Coexistence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of ionic single-tailed surfactants to aqueous solutions of EO18BO10 [EO = poly(ethylene oxide), BO = poly(1,2-butylene oxide), subscripts denote the number of repeating units] leads to the formation of vesicles, as probed by laser scanning confocal microscopy. Dynamic light scattering showed that the dimensions of these aggregates at early stages of development do not depend on the sign of the surfactant head group charge. Small-angle X-ray scattering (SAXS) analysis indicated the coexistence of smaller micelles of different sizes and varying polymer content in solution. In strong contrast to the dramatic increase of size of dispersed particles induced by surfactants in dilute solution, the d-spacing of corresponding mesophases reduces monotonically upon increasing surfactant loading. This effect points to the suppression of vesicles as a consequence of increasing ionic strength in concentrated solutions. Maximum enhancements of storage modulus and thermal stability of hybrid gels take place at different compositions, indicating a delicate balance between the number and size of polymer-poor aggregates (population increases with surfactant loading) and the number and size of polymer−surfactant complexes (number and size decrease in high surfactant concentrations).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altruism and selfishness are 30–50% heritable in man in both Western and non-Western populations. This genetically based variation in altruism and selfishness requires explanation. In non-human animals, altruism is generally directed towards relatives, and satisfies the condition known as Hamilton's rule. This nepotistic altruism evolves under natural selection only if the ratio of the benefit of receiving help to the cost of giving it exceeds a value that depends on the relatedness of the individuals involved. Standard analyses assume that the benefit provided by each individual is the same but it is plausible in some cases that as more individuals contribute, help is subject to diminishing returns. We analyse this situation using a single-locus two-allele model of selection in a diploid population with the altruistic allele dominant to the selfish allele. The analysis requires calculation of the relationship between the fitnesses of the genotypes and the frequencies of the genes. The fitnesses vary not only with the genotype of the individual but also with the distribution of phenotypes amongst the sibs of the individual and this depends on the genotypes of his parents. These calculations are not possible by direct fitness or ESS methods but are possible using population genetics. Our analysis shows that diminishing returns change the operation of natural selection and the outcome can now be a stable equilibrium between altruistic and selfish alleles rather than the elimination of one allele or the other. We thus provide a plausible genetic model of kin selection that leads to the stable coexistence in the same population of both altruistic and selfish individuals. This may explain reported genetic variation in altruism in man.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Where there is genetically based variation in selfishness and altruism, as in man, altruists with an innate ability to recognise and thereby only help their altruistic relatives may evolve. Here we use diploid population genetic models to chart the evolution of genetically-based discrimination in populations initially in stable equilibrium between altruism and selfishness. The initial stable equilibria occur because help is assumed subject to diminishing returns. Similar results were obtained whether we used a model with two independently inherited loci, one controlling altruism the other discrimination, or a one locus model with three alleles. The latter is the opposite extreme to the first model, and can be thought of as involving complete linkage between two loci on the same chromosome. The introduction of discrimination reduced the benefits obtained by selfish individuals, more so as the number of discriminators increased, and selfishness was eventually eliminated in some cases. In others selfishness persisted and the evolutionary outcome was a stable equilibrium involving selfish individuals and both discriminating and non-discriminating altruists. Heritable variation in selfishness, altruism and discrimination is predicted to be particularly evident among full sibs. The suggested coexistence of these three genetic dispositions could explain widespread interest within human social groups as to who will and who will not help others. These predictions merit experimental and observational investigation by primatologists, anthropologists and psychologists. Keywords: Population genetics, Diploid, Heritability, Prosocial, Behaviour genetics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nest site selection in arboreal, domatia-dwelling ants, particularly those coexisting on a single host plant, is little understood. To examine this phenomenon we studied the African savannah tree Vachellia erioloba, which hosts ants in swollen-thorn domatia. We found four ant species from different genera (Cataulacus intrudens, Tapinoma subtile, Tetraponera ambigua and an unidentified Crematogaster species). In contrast to other African ant plants, many V. erioloba trees (41 % in our survey) were simultaneously co-occupied by more than one ant species. Our study provides quantitative field data describing: (1) aspects of tree and domatia morphology relevant to supporting a community of mutualist ants, (2) how ant species occupancy varies with domatia morphology and (3) how ant colony size varies with domatia size and species. We found that Crematogaster sp. occupy the largest thorns, followed by C. intrudens, with T. subtile in the smallest thorns. Thorn age, as well as nest entrance hole size correlated closely with ant species occupant. These differing occupancy patterns may help to explain the unusual coexistence of three ant species on individual myrmecophytic trees. In all three common ant species, colony size, as measured by total number of ants, increased with domatia size. Additionally, domatia volume and species identity interact to predict ant numbers, suggesting differing responses between species to increased availability of nesting space. The proportion of total ants in nests that were immatures varied with thorn volume and species, highlighting the importance of domatia morphology in influencing colony structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A small group of phytoplankton species that produce toxic or allelopathic chemicals has a significant effect on plankton dynamics in marine ecosystems. The species of non-toxic phytoplankton, which are large in number, are affected by the toxin-allelopathy of those species. By analysis of the abundance data of marine phytoplankton collected from the North-West coast of the Bay of Bengal, an empirical relationship between the abundance of the potential toxin-producing species and the species diversity of the non-toxic phytoplankton is formulated. A change-point analysis demonstrates that the diversity of non-toxic phytoplankton increases with the increase of toxic species up to a certain level. However, for a massive increase of the toxin-producing species the diversity of phytoplankton at species level reduces gradually. Following the results, a deterministic relationship between the abundance of toxic phytoplankton and the diversity of non-toxic phytoplankton is developed. The abundance–diversity relationship develops a unimodal pathway through which the abundance of toxic species regulates the diversity of phytoplankton. These results contribute to the current understanding of the coexistence and biodiversity of phytoplankton, the top-down vs. bottom-up debate, and to that of abundance–diversity relationship in marine ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Without the top-down effects and the external/physical forcing, a stable coexistence of two phytoplankton species under a single resource is impossible — a result well known from the principle of competitive exclusion. Here I demonstrate by analysis of a mathematical model that such a stable coexistence in a homogeneous media without any external factor would be possible, at least theoretically, provided (i) one of the two species is toxin producing thereby has an allelopathic effect on the other, and (ii) the allelopathic effect exceeds a critical level. The threshold level of allelopathy required for the coexistence has been derived analytically in terms of the parameters associated with the resource competition and the nutrient recycling. That the extra mortality of a competitor driven by allelopathy of a toxic species gives a positive feed back to the algal growth process through the recycling is explained. And that this positive feed back plays a pivotal role in reducing competition pressures and helping species succession in the two-species model is demonstrated. Based on these specific coexistence results, I introduce and explain theoretically the allelopathic effect of a toxic species as a ‘pseudo-mixotrophy’—a mechanism of ‘if you cannot beat them or eat them, just kill them by chemical weapons’. The impact of this mechanism of species succession by pseudo-mixotrophy in the form of alleopathy is discussed in the context of current understanding on straight mixotrophy and resource-species relationship among phytoplankton species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An updated empirical approach is proposed for specifying coexistence requirements for genetically modified (GM) maize (Zea mays L.) production to ensure compliance with the 0.9% labeling threshold for food and feed in the European Union. The model improves on a previously published (Gustafson et al., 2006) empirical model by adding recent data sources to supplement the original database and including the following additional cases: (i) more than one GM maize source field adjacent to the conventional or organic field, (ii) the possibility of so-called “stacked” varieties with more than one GM trait, and (iii) lower pollen shed in the non-GM receptor field. These additional factors lead to the possibility for somewhat wider combinations of isolation distance and border rows than required in the original version of the empirical model. For instance, in the very conservative case of a 1-ha square non-GM maize field surrounded on all four sides by homozygous GM maize with 12 m isolation (the effective isolation distance for a single GM field), non-GM border rows of 12 m are required to be 95% confident of gene flow less than 0.9% in the non-GM field (with adventitious presence of 0.3%). Stacked traits of higher GM mass fraction and receptor fields of lower pollen shed would require a greater number of border rows to comply with the 0.9% threshold, and an updated extension to the model is provided to quantify these effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enrichment in resource availability theoretically destabilizes predator–prey dynamics (the paradox of enrichment). However, a minor change in the resource stoichiometry may make a prey toxic for the predator, and the presence of toxic prey affects the dynamics significantly. Here, theoretically we explore how, at increased carrying capacity, a toxic prey affects the oscillation or destabilization of predator–prey dynamics, and how its presence influences the growth of the predator as well as that of a palatable prey. Mathematical analysis determines the bounds on the food toxicity that allow the coexistence of a predator along with a palatable and a toxic prey. The overall results demonstrate that toxic food counteracts oscillation (destabilization) arising from enrichment of resource availability. Moreover, our results show that, at increased resource availability, toxic food that acts as a source of extra mortality may increase the abundance of the predator as well as that of the palatable prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plankton ecology, it is a fundamental question as to how a large number of competing phytoplankton species coexist in marine ecosystems under a seemingly-limited variety of resources. This ever-green question was first proposed by Hutchinson [Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95, 137–145] as ‘the paradox of the plankton’. Starting from Hutchinson [Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95, 137–145], over more than four decades several investigators have put forward varieties of mechanisms for the extreme diversity of phytoplankton species. In this article, within the boundary of our knowledge, we review the literature of the proposed solutions and give a brief overview of the mechanisms proposed so far. The proposed mechanisms that we discuss mainly include spatial and temporal heterogeneity in physical and biological environment, externally imposed or self-generated spatial segregation, horizontal mesoscale turbulence of ocean characterized by coherent vortices, oscillation and chaos generated by several internal and external causes, stable coexistence and compensatory dynamics under fluctuating temperature in resource competition, and finally the role of toxin-producing phytoplankton in maintaining the coexistence and biodiversity of the overall plankton population that we have proposed recently. We find that, although the different mechanisms proposed so far is potentially applicable to specific ecosystems, a universally accepted theory for explaining plankton diversity in natural waters is still an unachieved goal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the mutual dependencies and interactions among different groups of species of the plankton population, based on an analysis of the long-term field observations carried out by our group in the North–West coast of the Bay of Bengal. The plankton community is structured into three groups of species, namely, non-toxic phytoplankton (NTP), toxic phytoplankton (TPP) and zooplankton. To find the pair-wise dependencies among the three groups of plankton, Pearson and partial correlation coefficients are calculated. To explore the simultaneous interaction among all the three groups, a time series analysis is performed. Following an Expectation Maximization (E-M) algorithm, those data points which are missing due to irregularities in sampling are estimated, and with the completed data set a Vector Auto-Regressive (VAR) model is analyzed. The overall analysis demonstrates that toxin-producing phytoplankton play two distinct roles: the inhibition on consumption of toxic substances reduces the abundance of zooplankton, and the toxic materials released by TPP significantly compensate for the competitive disadvantages among phytoplankton species. Our study suggests that the presence of TPP might be a possible cause for the generation of a complex interaction among the large number of phytoplankton and zooplankton species that might be responsible for the prolonged coexistence of the plankton species in a fluctuating biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coexistence of a large number of phytoplankton species on a seemingly limited variety of resources is a classical problem in ecology, known as ‘the paradox of the plankton’. Strong fluctuations in species abundance due to the external factors or competitive interactions leading to oscillations, chaos and short-term equilibria have been cited so far to explain multi-species coexistence and biodiversity of phytoplankton. However, none of the explanations has been universally accepted. The qualitative view and statistical analysis of our field data establish two distinct roles of toxin-producing phytoplankton (TPP): toxin allelopathy weakens the interspecific competition among phytoplankton groups and the inhibition due to ingestion of toxic substances reduces the abundance of the grazer zooplankton. Structuring the overall plankton population as a combination of nontoxic phytoplankton (NTP), toxic phytoplankton, and zooplankton, here we offer a novel solution to the plankton paradox governed by the activity of TPP. We demonstrate our findings through qualitative analysis of our sample data followed by analysis of a mathematical model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground-based observations of dayside auroral forms and magnetic perturbations in the arctic sectors of Svalbard and Greenland, in combination with the high-resolution measurements of ionospheric ion drift and temperature by the EISCAT radar, are used to study temporal/spatial structures of cusp-type auroral forms in relation to convection. Large-scale patterns of equivalent convection in the dayside polar ionosphere are derived from the magnetic observations in Greenland and Svalbard. This information is used to estimate the ionospheric convection pattern in the vicinity of the cusp/cleft aurora. The reported observations, covering the period 0700-1130 UT, on January 11, 1993, are separated into four intervals according to the observed characteristics of the aurora and ionospheric convection. The morphology and intensity of the aurora are very different in quiet and disturbed intervals. A latitudinally narrow zone of intense and dynamical 630.0 nm emission equatorward of 75 degrees MLAT, was observed during periods of enhanced antisunward convection in the cusp region. This (type 1 cusp aurora) is considered to be the signature of plasma entry via magnetopause reconnection at low magnetopause latitudes, i.e. the low-latitude boundary layer (LLB I,). Another zone of weak 630.0 nm emission (type 2 cusp aurora) was observed to extend up to high latitudes (similar to 79 degrees MLAT) during relatively quiet magnetic conditions, when indications of reverse (sunward) convection was observed in the dayside polar cap. This is postulated to be a signature of merging between a northward directed IMF (B-z > 0) and the geomagnetic field poleward of the cusp. The coexistence of type 1 and 2 auroras was observed under intermediate circumstances. The optical observations from Svalbard and Greenland were also used to determine the temporal and spatial evolution of type 1 auroral forms, i.e. poleward-moving auroral events occurring in the vicinity of a rotational convection reversal in the early post-noon sector. Each event appeared as a local brightening at the equatorward boundary of the pre-existing type 1 cusp aurora, followed by poleward and eastward expansions of luminosity. The auroral events were associated with poleward-moving surges of enhanced ionospheric convection and F-layer ion temperature as observed by the EISCAT radar in Tromso. The EISCAT ion flow data in combination with the auroral observations show strong evidence for plasma flow across the open/closed field line boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An evidence-based review of the potential impact that the introduction of genetically-modified (GM) cereal and oilseed crops could have for the UK was carried out. The inter-disciplinary research project addressed the key research questions using scenarios for the uptake, or not, of GM technologies. This was followed by an extensive literature review, stakeholder consultation and financial modelling. The world area of canola, oilseed rape (OSR) low in both erucic acid in the oil and glucosinolates in the meal, was 34M ha in 2012 of which 27% was GM; Canada is the lead producer but it is also grown in the USA, Australia and Chile. Farm level effects of adopting GM OSR include: lower production costs; higher yields and profits; and ease of farm management. Growing GM OSR instead of conventional OSR reduces both herbicide usage and environmental impact. Some 170M ha of maize was grown in the world in 2011 of which 28% was GM; the main producers are the USA, China and Brazil. Spain is the main EU producer of GM maize although it is also grown widely in Portugal. Insect resistant (IR) and herbicide tolerant (HT) are the GM maize traits currently available commercially. Farm level benefits of adopting GM maize are lower costs of production through reduced use of pesticides and higher profits. GM maize adoption results in less pesticide usage than on conventional counterpart crops leading to less residues in food and animal feed and allowing increasing diversity of bees and other pollinators. In the EU, well-tried coexistence measures for growing GM crops in the proximity of conventional crops have avoided gene flow issues. Scientific evidence so far seems to indicate that there has been no environmental damage from growing GM crops. They may possibly even be beneficial to the environment as they result in less pesticides and herbicides being applied and improved carbon sequestration from less tillage. A review of work on GM cereals relevant for the UK found input trait work on: herbicide and pathogen tolerance; abiotic stress such as from drought or salinity; and yield traits under different field conditions. For output traits, work has mainly focussed on modifying the nutritional components of cereals and in connection with various enzymes, diagnostics and vaccines. Scrutiny of applications submitted for field trial testing of GM cereals found around 9000 applications in the USA, 15 in Australia and 10 in the EU since 1996. There have also been many patent applications and granted patents for GM cereals in the USA for both input and output traits;an indication of the scale of such work is the fact that in a 6 week period in the spring of 2013, 12 patents were granted relating to GM cereals. A dynamic financial model has enabled us to better understand and examine the likely performance of Bt maize and HT OSR for the south of the UK, if cultivation is permitted in the future. It was found that for continuous growing of Bt maize and HT OSR, unless there was pest pressure for the former and weed pressure for the latter, the seed premia and likely coexistence costs for a buffer zone between other crops would reduce the financial returns for the GM crops compared with their conventional counterparts. When modelling HT OSR in a four crop rotation, it was found that gross margins increased significantly at the higher levels of such pest or weed pressure, particularly for farm businesses with larger fields where coexistence costs would be scaled down. The impact of the supply of UK-produced GM crops on the wider supply chain was examined through an extensive literature review and widespread stakeholder consultation with the feed supply chain. The animal feed sector would benefit from cheaper supplies of raw materials if GM crops were grown and, in the future, they might also benefit from crops with enhanced nutritional profile (such as having higher protein levels) becoming available. This would also be beneficial to livestock producers enabling lower production costs and higher margins. Whilst coexistence measures would result in increased costs, it is unlikely that these would cause substantial changes in the feed chain structure. Retailers were not concerned about a future increase in the amount of animal feed coming from GM crops. To conclude, we (the project team) feel that the adoption of currently available and appropriate GM crops in the UK in the years ahead would benefit farmers, consumers and the feed chain without causing environmental damage. Furthermore, unless British farmers are allowed to grow GM crops in the future, the competitiveness of farming in the UK is likely to decline relative to that globally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Break crops and multi-crop rotations are common in arable farm management, and the soil quality inherited from a previous crop is one of the parameters that determine the gross margin that is achieved with a given crop from a given parcel of land. In previous work we developed a dynamic economic model to calculate the potential yield and gross margin of a set of crops grown in a selection of typical rotation scenarios, and we reported use of the model to calculate coexistence costs for GM maize grown in a crop rotation. The model predicts economic effects of pest and weed pressures in monthly time steps. Validation of the model in respect of specific traits is proceeding as data from trials with novel crop varieties is published. Alongside this aspect of the validation process, we are able to incorporate data representing the economic impact of abiotic stresses on conventional crops, and then use the model to predict the cumulative gross margin achievable from a sequence of conventional crops grown at varying levels of abiotic stress. We report new progress with this aspect of model validation. In this paper, we report the further development of the model to take account of abiotic stress arising from drought, flood, heat or frost; such stresses being introduced in addition to variable pest and weed pressure. The main purpose is to assess the economic incentive for arable farmers to adopt novel crop varieties having multiple ‘stacked’ traits introduced by means of various biotechnological tools available to crop breeders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the dynamics and diversity of marine phytoplankton is essential for predicting oceanic primary production, oxygen generation and carbon sequestration. Several top-down and bottom-up factors lead to complex phytoplankton dynamics. Complexities further arise from inter-species interactions within phytoplankton communities. Consequently, some of the basic questions on phytoplankton diversity, identified long ago, still puzzle the ecologists: for example, what regulates the diversity in simple systems where species compete for limiting resources? In this context, allelopathic interaction among phytoplankton species has been identified as a potential driver of their dynamics and regulator of their diversity. This chapter deals with the importance of allelopathy in regulating the outcome of nutrient competition among phytoplankton species, through analysis of a resource-competition model. It demonstrates that, through the mechanism of pseudo-mixotrophy - proposed earlier by the author - allelopathy provides essential growth advantage to weaker competitors, and stabilizes resource competition, which ensures the coexistence of two phytoplankton on a single nutrient. In simple nutrient-phytoplankton interactions where higher-trophic influences are negligible, this mechanism theoretically promotes phytoplankton diversity, and can potentially support high diversity in natural phytoplankton communities.